Your selections:

10102 Applied Mathematics
10103 Numerical and Computational Mathematics
10802 Computation Theory and Mathematics
1Abstract subdifferential
1Asplund space
1Coderivative
1Directional Hölder metric subregularity
1Distance functions
1Error bound
1Error bound property
1Fréchet normal cone
1Fréchet subdifferential
1Generalized Equations
1Generalized equations
1Limiting normal cone
1Limiting subdifferential
1Lower semicontinuous
1Mapping

Show More

Show Less

Format Type

Directional metric regularity of multifunctions

- Ngai, Huynh Van, Thera, Michel

**Authors:**Ngai, Huynh Van , Thera, Michel**Date:**2015**Type:**Text , Journal article**Relation:**Mathematics of Operations Research Vol. 40, no. 4 (2015), p. 969-991**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**In this paper, we study relative metric regularity of set-valued mappings with emphasis on directional metric regularity. We establish characterizations of relative metric regularity without assuming the completeness of the image spaces, by using the relative lower semicontinuous envelopes of the distance functions to set-valued mappings. We then apply these characterizations to establish a coderivative type criterion for directional metric regularity as well as for the robustness of metric regularity.**Description:**In this paper, we study relative metric regularity of set-valued mappings with emphasis on directional metric regularity. We establish characterizations of relative metric regularity without assuming the completeness of the image spaces, by using the relative lower semicontinuous envelopes of the distance functions to set-valued mappings. We then apply these characterizations to establish a coderivative type criterion for directional metric regularity as well as for the robustness of metric regularity. © 2015 INFORMS.

**Authors:**Ngai, Huynh Van , Thera, Michel**Date:**2015**Type:**Text , Journal article**Relation:**Mathematics of Operations Research Vol. 40, no. 4 (2015), p. 969-991**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**In this paper, we study relative metric regularity of set-valued mappings with emphasis on directional metric regularity. We establish characterizations of relative metric regularity without assuming the completeness of the image spaces, by using the relative lower semicontinuous envelopes of the distance functions to set-valued mappings. We then apply these characterizations to establish a coderivative type criterion for directional metric regularity as well as for the robustness of metric regularity.**Description:**In this paper, we study relative metric regularity of set-valued mappings with emphasis on directional metric regularity. We establish characterizations of relative metric regularity without assuming the completeness of the image spaces, by using the relative lower semicontinuous envelopes of the distance functions to set-valued mappings. We then apply these characterizations to establish a coderivative type criterion for directional metric regularity as well as for the robustness of metric regularity. © 2015 INFORMS.

Metric regularity relative to a cone

- Van Ngai, Huynh, Tron, Nguyen, Théra, Michel

**Authors:**Van Ngai, Huynh , Tron, Nguyen , Théra, Michel**Date:**2019**Type:**Text , Journal article**Relation:**Vietnam Journal of Mathematics Vol. 47, no. 3 (2019), p. 733-756**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:**false**Reviewed:****Description:**The purpose of this paper is to discuss some of the highlights of the theory of metric regularity relative to a cone. For example, we establish a slope and some coderivative characterizations of this concept, as well as some stability results with respect to a Lipschitz perturbation.

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?