Tracing the Pace of COVID-19 research : topic modeling and evolution
- Liu, Jiaying, Nie, Hansong, Li, Shihao, Ren, Jing, Xia, Feng
- Authors: Liu, Jiaying , Nie, Hansong , Li, Shihao , Ren, Jing , Xia, Feng
- Date: 2021
- Type: Text , Journal article
- Relation: Big Data Research Vol. 25, no. (2021), p.
- Full Text:
- Reviewed:
- Description: COVID-19 has been spreading rapidly around the world. With the growing attention on the deadly pandemic, discussions and research on COVID-19 are rapidly increasing to exchange latest findings with the hope to accelerate the pace of finding a cure. As a branch of information technology, artificial intelligence (AI) has greatly expedited the development of human society. In this paper, we investigate and visualize the on-going advancements of early scientific research on COVID-19 from the perspective of AI. By adopting the Latent Dirichlet Allocation (LDA) model, this paper allocates the research articles into 50 key research topics pertinent to COVID-19 according to their abstracts. We present an overview of early studies of the COVID-19 crisis at different scales including referencing/citation behavior, topic variation and their inner interactions. We also identify innovative papers that are regarded as the cornerstones in the development of COVID-19 research. The results unveil the focus of scientific research, thereby giving deep insights into how the academic society contributes to combating the COVID-19 pandemic. © 2021 Elsevier Inc. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Jing Ren and Feng Xia" is provided in this record**
- Description: COVID-19 has been spreading rapidly around the world. With the growing attention on the deadly pandemic, discussions and research on COVID-19 are rapidly increasing to exchange latest findings with the hope to accelerate the pace of finding a cure. As a branch of information technology, artificial intelligence (AI) has greatly expedited the development of human society. In this paper, we investigate and visualize the on-going advancements of early scientific research on COVID-19 from the perspective of AI. By adopting the Latent Dirichlet Allocation (LDA) model, this paper allocates the research articles into 50 key research topics pertinent to COVID-19 according to their abstracts. We present an overview of early studies of the COVID-19 crisis at different scales including referencing/citation behavior, topic variation and their inner interactions. We also identify innovative papers that are regarded as the cornerstones in the development of COVID-19 research. The results unveil the focus of scientific research, thereby giving deep insights into how the academic society contributes to combating the COVID-19 pandemic. © 2021 Elsevier Inc.
- Authors: Liu, Jiaying , Nie, Hansong , Li, Shihao , Ren, Jing , Xia, Feng
- Date: 2021
- Type: Text , Journal article
- Relation: Big Data Research Vol. 25, no. (2021), p.
- Full Text:
- Reviewed:
- Description: COVID-19 has been spreading rapidly around the world. With the growing attention on the deadly pandemic, discussions and research on COVID-19 are rapidly increasing to exchange latest findings with the hope to accelerate the pace of finding a cure. As a branch of information technology, artificial intelligence (AI) has greatly expedited the development of human society. In this paper, we investigate and visualize the on-going advancements of early scientific research on COVID-19 from the perspective of AI. By adopting the Latent Dirichlet Allocation (LDA) model, this paper allocates the research articles into 50 key research topics pertinent to COVID-19 according to their abstracts. We present an overview of early studies of the COVID-19 crisis at different scales including referencing/citation behavior, topic variation and their inner interactions. We also identify innovative papers that are regarded as the cornerstones in the development of COVID-19 research. The results unveil the focus of scientific research, thereby giving deep insights into how the academic society contributes to combating the COVID-19 pandemic. © 2021 Elsevier Inc. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Jing Ren and Feng Xia" is provided in this record**
- Description: COVID-19 has been spreading rapidly around the world. With the growing attention on the deadly pandemic, discussions and research on COVID-19 are rapidly increasing to exchange latest findings with the hope to accelerate the pace of finding a cure. As a branch of information technology, artificial intelligence (AI) has greatly expedited the development of human society. In this paper, we investigate and visualize the on-going advancements of early scientific research on COVID-19 from the perspective of AI. By adopting the Latent Dirichlet Allocation (LDA) model, this paper allocates the research articles into 50 key research topics pertinent to COVID-19 according to their abstracts. We present an overview of early studies of the COVID-19 crisis at different scales including referencing/citation behavior, topic variation and their inner interactions. We also identify innovative papers that are regarded as the cornerstones in the development of COVID-19 research. The results unveil the focus of scientific research, thereby giving deep insights into how the academic society contributes to combating the COVID-19 pandemic. © 2021 Elsevier Inc.
MODEL : motif-based deep feature learning for link prediction
- Wang, Lei, Ren, Jing, Xu, Bo, Li, Jianxin, Luo, Wei, Xia, Feng
- Authors: Wang, Lei , Ren, Jing , Xu, Bo , Li, Jianxin , Luo, Wei , Xia, Feng
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Transactions on Computational Social Systems Vol. 7, no. 2 (2020), p. 503-516
- Full Text:
- Reviewed:
- Description: Link prediction plays an important role in network analysis and applications. Recently, approaches for link prediction have evolved from traditional similarity-based algorithms into embedding-based algorithms. However, most existing approaches fail to exploit the fact that real-world networks are different from random networks. In particular, real-world networks are known to contain motifs, natural network building blocks reflecting the underlying network-generating processes. In this article, we propose a novel embedding algorithm that incorporates network motifs to capture higher order structures in the network. To evaluate its effectiveness for link prediction, experiments were conducted on three types of networks: social networks, biological networks, and academic networks. The results demonstrate that our algorithm outperforms both the traditional similarity-based algorithms (by 20%) and the state-of-the-art embedding-based algorithms (by 19%). © 2014 IEEE.
- Authors: Wang, Lei , Ren, Jing , Xu, Bo , Li, Jianxin , Luo, Wei , Xia, Feng
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Transactions on Computational Social Systems Vol. 7, no. 2 (2020), p. 503-516
- Full Text:
- Reviewed:
- Description: Link prediction plays an important role in network analysis and applications. Recently, approaches for link prediction have evolved from traditional similarity-based algorithms into embedding-based algorithms. However, most existing approaches fail to exploit the fact that real-world networks are different from random networks. In particular, real-world networks are known to contain motifs, natural network building blocks reflecting the underlying network-generating processes. In this article, we propose a novel embedding algorithm that incorporates network motifs to capture higher order structures in the network. To evaluate its effectiveness for link prediction, experiments were conducted on three types of networks: social networks, biological networks, and academic networks. The results demonstrate that our algorithm outperforms both the traditional similarity-based algorithms (by 20%) and the state-of-the-art embedding-based algorithms (by 19%). © 2014 IEEE.
Assessing trust level of a driverless car using deep learning
- Karmakar, Gour, Chowdhury, Abdullahi, Das, Rajkumar, Kamruzzaman, Joarder, Islam, Syed
- Authors: Karmakar, Gour , Chowdhury, Abdullahi , Das, Rajkumar , Kamruzzaman, Joarder , Islam, Syed
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Transactions on Intelligent Transportation Systems Vol. 22, no. 7 (2021), p. 4457-4466
- Full Text: false
- Reviewed:
- Description: The increasing adoption of driverless cars already providing a shift to move away from traditional transportation systems to automated ones in many industrial and commercial applications. Recent research has justified that driverless vehicles will considerably reduce traffic congestions, accidents, carbon emissions, and enhance the accessibility of driving to wider cross-section of people and lifestyle choices. However, at present, people's main concerns are about its privacy and security. Since traditional protocol layers based security mechanisms are not so effective for a distributed system, trust value-based security mechanisms, a type of pervasive security, are appearing as popular and promising techniques. A few statistical non-learning based models for measuring the trust level of a driverless are available in the current literature. These are not so effective because of not being able to capture the extremely distributed, dynamic, and complex nature of the traffic systems. To bridge this research gap, in this paper, for the first time, we propose two deep learning-based models that measure the trustworthiness of a driverless car and its major On-Board Unit (OBU) components. The second model also determines its OBU components that were breached during the driving operation. Results produced using real and simulated traffic data demonstrate that our proposed DNN based deep learning models outperform other machine learning models in assessing the trustworthiness of individual car as well as its OBU components. The average precision of detection accuracies for the car, LiDAR, camera, and radar are 0.99, 0.96, 0.81, and 0.83, respectively, which indicates the potential real-life application of our models in assessing the trust level of a driverless car. © 2000-2011 IEEE.
- «
- ‹
- 1
- ›
- »