SPEED: A deep learning assisted privacy-preserved framework for intelligent transportation systems
- Usman, Muhammad, Jan, Mian, Jolfaei, Alireza
- Authors: Usman, Muhammad , Jan, Mian , Jolfaei, Alireza
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Transactions on Intelligent Transportation Systems Vol. 22, no. 7 (2021), p. 4376-4384
- Full Text: false
- Reviewed:
- Description: Roadside cameras in an Intelligent Transportation System (ITS) are used for various purposes, e.g., monitoring the speed of vehicles, violations of laws, and detection of suspicious activities in parking lots, streets, and side roads. These cameras generate big multimedia data, and as a result, the ITS faces challenges like data management, redundancy, and privacy breaching in end-to-end communication. To solve these challenges, we propose a framework, called SPEED, based on a multi-level edge computing architecture and machine learning algorithms. In this framework, data captured by end-devices, e.g., smart cameras, is distributed among multiple Level-One Edge Devices (LOEDs) to deal with data management issue and minimize packet drop due to buffer overflowing on end-devices and LOEDs. The data is forwarded from LOEDs to Level-Two Edge Devices (LTEDs) in a compressed sensed format. The LTEDs use an online Least-Squares Support-Vector Machines (LS-SVMs) model to determine distribution characteristics and index values of compressed sensed data to preserve its privacy during transmission between LTEDs and High-Level Edge Devices (HLEDs). The HLEDs estimate the redundancy in forwarded data using a deep learning architecture, i.e., a Convolutional Neural Network (CNN). The CNN is used to detect the presence of moving objects in the forwarded data. If a movement is detected, the data is forwarded to cloud servers for further analysis otherwise discarded. Experimental results show that the use of a multi-level edge computing architecture helps in managing the generated data. The machine learning algorithms help in addressing issues like data redundancy and privacy-preserving in end-to-end communication. © 2000-2011 IEEE.
A framework for data privacy and security accountability in data breach communications
- Thomas, Louise, Gondal, Iqbal, Oseni, Taiwo, Firmin, Sally
- Authors: Thomas, Louise , Gondal, Iqbal , Oseni, Taiwo , Firmin, Sally
- Date: 2022
- Type: Text , Journal article
- Relation: Computers and Security Vol. 116, no. (2022), p.
- Full Text: false
- Reviewed:
- Description: Organisations need to take steps to protect the privacy and security of the personal information they hold. However, when data is breached, how do individuals know whether the organisation took reasonable steps to protect their data? When breached organisations notify affected individuals, this communication is likely to be one of the few windows into the incident from the outside and can become an important artefact for research. This desktop study aimed to consider the extent to which publicly available Australian data breach communications reflect data privacy and security best practices. This paper presents a brief review of literature and government guidance on data security and privacy best practices, along with the results of a qualitative content analysis of 33 publicly available Australian data breach communications. This analysis illustrated that there was little reflection of data privacy and security practices. Literature, government guidance and the content analysis were used to inform and develop a new voluntary framework for organisations. This consists of a series of evaluation questions divided into two broad categories: responsible data management and responsible portrayal of the breach. The framework has the potential to help organisations plan the inclusion of data privacy and security management aspects in their data breach communications. This could assist organisations to address their legal and ethical responsibility to account for their actions in managing privacy and security of the personal data they hold. © 2022
Best practice data life cycle approaches for the life sciences
- Griffin, Philippa, Khadake, Jyoti, LeMay, Kate, Lewis, Suzanna, Orchard, Sandra, Pask, Andrew, Pope, Bernard, Roessner, Ute, Russell, Keith, Seemann, Torsten, Treloar, Andrew, Tyagi, Sonika, Christiansen, Jeffrey, Dayalan, Saravanan, Gladman, Simon, Hangartner, Sandra, Hayden, Helen, Ho, William, Keeble-Gagnère, Gabriel, Korhonen, Pasi, Neish, Peter, Prestes, Priscilla, Richardson, Mark, Watson-Haigh, Nathan, Wyres, Kelly, Young, Neil, Schneider, Maria
- Authors: Griffin, Philippa , Khadake, Jyoti , LeMay, Kate , Lewis, Suzanna , Orchard, Sandra , Pask, Andrew , Pope, Bernard , Roessner, Ute , Russell, Keith , Seemann, Torsten , Treloar, Andrew , Tyagi, Sonika , Christiansen, Jeffrey , Dayalan, Saravanan , Gladman, Simon , Hangartner, Sandra , Hayden, Helen , Ho, William , Keeble-Gagnère, Gabriel , Korhonen, Pasi , Neish, Peter , Prestes, Priscilla , Richardson, Mark , Watson-Haigh, Nathan , Wyres, Kelly , Young, Neil , Schneider, Maria
- Date: 2018
- Type: Text , Journal article
- Relation: F1000 Research Vol. 6, no. (2018), p. 1-28
- Full Text:
- Reviewed:
- Description: Throughout history, the life sciences have been revolutionised by technological advances; in our era this is manifested by advances in instrumentation for data generation, and consequently researchers now routinely handle large amounts of heterogeneous data in digital formats. The simultaneous transitions towards biology as a data science and towards a 'life cycle' view of research data pose new challenges. Researchers face a bewildering landscape of data management requirements, recommendations and regulations, without necessarily being able to access data management training or possessing a clear understanding of practical approaches that can assist in data management in their particular research domain. Here we provide an overview of best practice data life cycle approaches for researchers in the life sciences/bioinformatics space with a particular focus on 'omics' datasets and computer-based data processing and analysis. We discuss the different stages of the data life cycle and provide practical suggestions for useful tools and resources to improve data management practices. © 2018 Griffin PC et al.
- Authors: Griffin, Philippa , Khadake, Jyoti , LeMay, Kate , Lewis, Suzanna , Orchard, Sandra , Pask, Andrew , Pope, Bernard , Roessner, Ute , Russell, Keith , Seemann, Torsten , Treloar, Andrew , Tyagi, Sonika , Christiansen, Jeffrey , Dayalan, Saravanan , Gladman, Simon , Hangartner, Sandra , Hayden, Helen , Ho, William , Keeble-Gagnère, Gabriel , Korhonen, Pasi , Neish, Peter , Prestes, Priscilla , Richardson, Mark , Watson-Haigh, Nathan , Wyres, Kelly , Young, Neil , Schneider, Maria
- Date: 2018
- Type: Text , Journal article
- Relation: F1000 Research Vol. 6, no. (2018), p. 1-28
- Full Text:
- Reviewed:
- Description: Throughout history, the life sciences have been revolutionised by technological advances; in our era this is manifested by advances in instrumentation for data generation, and consequently researchers now routinely handle large amounts of heterogeneous data in digital formats. The simultaneous transitions towards biology as a data science and towards a 'life cycle' view of research data pose new challenges. Researchers face a bewildering landscape of data management requirements, recommendations and regulations, without necessarily being able to access data management training or possessing a clear understanding of practical approaches that can assist in data management in their particular research domain. Here we provide an overview of best practice data life cycle approaches for researchers in the life sciences/bioinformatics space with a particular focus on 'omics' datasets and computer-based data processing and analysis. We discuss the different stages of the data life cycle and provide practical suggestions for useful tools and resources to improve data management practices. © 2018 Griffin PC et al.
- «
- ‹
- 1
- ›
- »