TIMP-2 regulates proliferation, invasion and STAT3-mediated cancer stem cell-dependent chemoresistance in ovarian cancer cells
- Escalona, Ruth, Bilandzic, Maree, Western, Patrick, Kadife, Elif, Kannourakis, George, Findlay, Jock, Ahmed, Nuzhat
- Authors: Escalona, Ruth , Bilandzic, Maree , Western, Patrick , Kadife, Elif , Kannourakis, George , Findlay, Jock , Ahmed, Nuzhat
- Date: 2020
- Type: Text , Journal article
- Relation: BMC Cancer Vol. 20, no. 1 (2020), p.
- Full Text:
- Reviewed:
- Description: Background: The metzincin family of metalloproteinases and the tissue inhibitors of metalloproteinases (TIMPs) are essential proteins required for biological processes during cancer progression. This study aimed to determine the role of TIMP-2 in ovarian cancer progression and chemoresistance by reducing TIMP-2 expression in vitro in Fallopian tube secretory epithelial (FT282) and ovarian cancer (JHOS2 and OVCAR4) cell lines. Methods: FT282, JHOS2 and OVCAR4 cells were transiently transfected with either single or pooled TIMP-2 siRNAs. The expression of different genes after TIMP-2 knock down (T2-KD) or in response to chemotherapy was determined at the mRNA level by quantitative real time PCR (qRT-PCR) and at the protein level by immunofluorescence. Sensitivity of the cell lines in response to chemotherapy after TIMP-2 knock down was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-Ethynyl-2′-deoxyuridine (EdU) assays. Cell invasion in response to TIMP-2 knockdown was determined by xCELLigence. Results: Sixty to 90 % knock down of TIMP-2 expression was confirmed in FT282, OVCAR4 and JHOS2 cell lines at the mRNA and protein levels. TIMP-2 knock down did not change the mRNA expression of TIMP-1 or TIMP-3. However, a significant downregulation of MMP-2 in T2-KD cells occurred at both the protein and activation levels, compared to Control (Cont; scrambled siRNA) and Parental cells (P, transfection reagent only). In contrast, membrane bound MT1-MMP protein levels were significantly upregulated in T2-KD compared to Cont and P cells. T2-KD cells exhibited enhanced proliferation and increased sensitivity to cisplatin and paclitaxel treatments. Enhanced invasion was observed in the T2-KD-JOSH2 and OVCAR4 cells but not in T2-KD-FT282 cells. Treatment with cisplatin or paclitaxel significantly elevated the expression of TIMP-2 in Cont cells but not in T2-KD cells, consistent with significantly elevated expression of chemoresistance and CSC markers and activation of STAT3. Furthermore, a potent inhibitor of STAT3 activation, Momelotinib, suppressed chemotherapy-induced activation of P-STAT3 in OVCAR4 cells with concomitant reductions in the expression of chemoresistance genes and CSC markers. Conclusions: The above results suggest that TIMP-2 may have a novel role in ovarian cancer proliferation, invasion and chemoresistance. © 2020 The Author(s).
- Authors: Escalona, Ruth , Bilandzic, Maree , Western, Patrick , Kadife, Elif , Kannourakis, George , Findlay, Jock , Ahmed, Nuzhat
- Date: 2020
- Type: Text , Journal article
- Relation: BMC Cancer Vol. 20, no. 1 (2020), p.
- Full Text:
- Reviewed:
- Description: Background: The metzincin family of metalloproteinases and the tissue inhibitors of metalloproteinases (TIMPs) are essential proteins required for biological processes during cancer progression. This study aimed to determine the role of TIMP-2 in ovarian cancer progression and chemoresistance by reducing TIMP-2 expression in vitro in Fallopian tube secretory epithelial (FT282) and ovarian cancer (JHOS2 and OVCAR4) cell lines. Methods: FT282, JHOS2 and OVCAR4 cells were transiently transfected with either single or pooled TIMP-2 siRNAs. The expression of different genes after TIMP-2 knock down (T2-KD) or in response to chemotherapy was determined at the mRNA level by quantitative real time PCR (qRT-PCR) and at the protein level by immunofluorescence. Sensitivity of the cell lines in response to chemotherapy after TIMP-2 knock down was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-Ethynyl-2′-deoxyuridine (EdU) assays. Cell invasion in response to TIMP-2 knockdown was determined by xCELLigence. Results: Sixty to 90 % knock down of TIMP-2 expression was confirmed in FT282, OVCAR4 and JHOS2 cell lines at the mRNA and protein levels. TIMP-2 knock down did not change the mRNA expression of TIMP-1 or TIMP-3. However, a significant downregulation of MMP-2 in T2-KD cells occurred at both the protein and activation levels, compared to Control (Cont; scrambled siRNA) and Parental cells (P, transfection reagent only). In contrast, membrane bound MT1-MMP protein levels were significantly upregulated in T2-KD compared to Cont and P cells. T2-KD cells exhibited enhanced proliferation and increased sensitivity to cisplatin and paclitaxel treatments. Enhanced invasion was observed in the T2-KD-JOSH2 and OVCAR4 cells but not in T2-KD-FT282 cells. Treatment with cisplatin or paclitaxel significantly elevated the expression of TIMP-2 in Cont cells but not in T2-KD cells, consistent with significantly elevated expression of chemoresistance and CSC markers and activation of STAT3. Furthermore, a potent inhibitor of STAT3 activation, Momelotinib, suppressed chemotherapy-induced activation of P-STAT3 in OVCAR4 cells with concomitant reductions in the expression of chemoresistance genes and CSC markers. Conclusions: The above results suggest that TIMP-2 may have a novel role in ovarian cancer proliferation, invasion and chemoresistance. © 2020 The Author(s).
Coalition of Oct4A and β1 integrins in facilitating metastasis in ovarian cancer
- Samardzija, Chantel, Luwor, Rodney, Quinn, Michael, Kannourakis, George, Findlay, Jock, Ahmed, Nuzhat
- Authors: Samardzija, Chantel , Luwor, Rodney , Quinn, Michael , Kannourakis, George , Findlay, Jock , Ahmed, Nuzhat
- Date: 2016
- Type: Text , Journal article
- Relation: BMC Cancer Vol. 16, no. 1 (2016), p. 1-16
- Full Text:
- Reviewed:
- Description: Background: Ovarian cancer is a metastatic disease and one of the leading causes of gynaecology malignancy-related deaths in women. Cancer stem cells (CSCs) are key contributors of cancer metastasis and relapse. Integrins are a family of cell surface receptors which allow interactions between cells and their surrounding microenvironment and play a fundamental role in promoting metastasis. This study investigates the molecular mechanism which associates CSCs and integrins in ovarian cancer metastasis. Methods: The expression of Oct4A in high-grade serous ovarian tumors and normal ovaries was determined by immunofluorescence analysis. The functional role of Oct4A was evaluated by generating stable knockdown (KD) of Oct4A clones in an established ovarian cancer cell line HEY using shRNA-mediated silencing. The expression of integrins in cell lines was evaluated by flow cytometry. Spheroid forming ability, adhesion and the activities of matrix metalloproteinases 9/2 (MMP-9/2) was measured by in vitro functional assays and gelatin zymography. These observations were further validated in in vivo mouse models using Balb/c nu/nu mice. Results: We report significantly elevated expression of Oct4A in high-grade serous ovarian tumors compared to normal ovarian tissues. The expression of Oct4A in ovarian cancer cell lines correlated with their CSC-related sphere forming abilities. The suppression of Oct4A in HEY cells resulted in a significant diminution of integrin β1 expression and associated α5 and α2 subunits compared to vector control cells. This was associated with a reduced adhesive ability on collagen and fibronectin and decreased secretion of pro-MMP2 in Oct4A KD cells compared to vector control cells. In vivo, Oct4A knock down (KD) cells produced tumors which were significantly smaller in size and weight compared to tumors derived from vector control cells. Immunohistochemical analyses of Oct4A KD tumor xenografts demonstrated a significant loss of cytokeratin 7 (CK7), Glut-1 as well as CD34 and CD31 compared to vector control cell-derived xenografts. Conclusion: The expression of Oct4A may be crucial to promote and sustain integrin-mediated extracellular matrix (ECM) remodeling requisite for tumor metastasis in ovarian cancer patients. © 2016 The Author(s).
- Authors: Samardzija, Chantel , Luwor, Rodney , Quinn, Michael , Kannourakis, George , Findlay, Jock , Ahmed, Nuzhat
- Date: 2016
- Type: Text , Journal article
- Relation: BMC Cancer Vol. 16, no. 1 (2016), p. 1-16
- Full Text:
- Reviewed:
- Description: Background: Ovarian cancer is a metastatic disease and one of the leading causes of gynaecology malignancy-related deaths in women. Cancer stem cells (CSCs) are key contributors of cancer metastasis and relapse. Integrins are a family of cell surface receptors which allow interactions between cells and their surrounding microenvironment and play a fundamental role in promoting metastasis. This study investigates the molecular mechanism which associates CSCs and integrins in ovarian cancer metastasis. Methods: The expression of Oct4A in high-grade serous ovarian tumors and normal ovaries was determined by immunofluorescence analysis. The functional role of Oct4A was evaluated by generating stable knockdown (KD) of Oct4A clones in an established ovarian cancer cell line HEY using shRNA-mediated silencing. The expression of integrins in cell lines was evaluated by flow cytometry. Spheroid forming ability, adhesion and the activities of matrix metalloproteinases 9/2 (MMP-9/2) was measured by in vitro functional assays and gelatin zymography. These observations were further validated in in vivo mouse models using Balb/c nu/nu mice. Results: We report significantly elevated expression of Oct4A in high-grade serous ovarian tumors compared to normal ovarian tissues. The expression of Oct4A in ovarian cancer cell lines correlated with their CSC-related sphere forming abilities. The suppression of Oct4A in HEY cells resulted in a significant diminution of integrin β1 expression and associated α5 and α2 subunits compared to vector control cells. This was associated with a reduced adhesive ability on collagen and fibronectin and decreased secretion of pro-MMP2 in Oct4A KD cells compared to vector control cells. In vivo, Oct4A knock down (KD) cells produced tumors which were significantly smaller in size and weight compared to tumors derived from vector control cells. Immunohistochemical analyses of Oct4A KD tumor xenografts demonstrated a significant loss of cytokeratin 7 (CK7), Glut-1 as well as CD34 and CD31 compared to vector control cell-derived xenografts. Conclusion: The expression of Oct4A may be crucial to promote and sustain integrin-mediated extracellular matrix (ECM) remodeling requisite for tumor metastasis in ovarian cancer patients. © 2016 The Author(s).
Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells : Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells
- Ahmed, Nuzhat, Escalona, Ruth, Leung, Dilys, Chan, Emily, Kannourakis, George
- Authors: Ahmed, Nuzhat , Escalona, Ruth , Leung, Dilys , Chan, Emily , Kannourakis, George
- Date: 2018
- Type: Text , Journal article , Review
- Relation: Seminars in Cancer Biology Vol. 53, no. (2018), p. 265-281
- Full Text:
- Reviewed:
- Description: Cancer stem cells (CSCs) are a sub-population of tumour cells, which are responsible to drive tumour growth, metastasis and therapy resistance. It has recently been proposed that enhanced glucose metabolism and immune evasion by tumour cells are linked, and are modulated by the changing tumour microenvironment (TME) that creates a competition for nutrient consumption between tumour and different sub-types of cells attracted to the TME. To facilitate efficient nutrient distribution, oncogene-induced inflammatory milieu in the tumours facilitate adaptive metabolic changes in the surrounding non-malignant cells to secrete metabolites that are used as alternative nutrient sources by the tumours to sustain its increasing energy needs for growth and anabolic functions. This scenario also affects CSCs residing at the primary or metastatic niches. This review summarises recent advances in our understanding of the metabolic phenotypes of cancer cells and CSCs and how these processes are affected by the TME. We also discuss how the evolving TME modulates tumour cells and CSCs in cancer progression. Using previously described proteomic and genomic platforms, ovarian cancer cell lines and a mouse xenograft model we highlight the existence of metabolic and immune regulatory signatures in chemoresistant ovarian CSCs, and discuss how these processes may affect recurrence in ovarian tumours. We propose that progress in cancer control and eradication may depend not only on the elimination of highly chemoresistant CSCs, but also in designing novel strategies which would intervene with the tumour-promoting TME factors.
- Authors: Ahmed, Nuzhat , Escalona, Ruth , Leung, Dilys , Chan, Emily , Kannourakis, George
- Date: 2018
- Type: Text , Journal article , Review
- Relation: Seminars in Cancer Biology Vol. 53, no. (2018), p. 265-281
- Full Text:
- Reviewed:
- Description: Cancer stem cells (CSCs) are a sub-population of tumour cells, which are responsible to drive tumour growth, metastasis and therapy resistance. It has recently been proposed that enhanced glucose metabolism and immune evasion by tumour cells are linked, and are modulated by the changing tumour microenvironment (TME) that creates a competition for nutrient consumption between tumour and different sub-types of cells attracted to the TME. To facilitate efficient nutrient distribution, oncogene-induced inflammatory milieu in the tumours facilitate adaptive metabolic changes in the surrounding non-malignant cells to secrete metabolites that are used as alternative nutrient sources by the tumours to sustain its increasing energy needs for growth and anabolic functions. This scenario also affects CSCs residing at the primary or metastatic niches. This review summarises recent advances in our understanding of the metabolic phenotypes of cancer cells and CSCs and how these processes are affected by the TME. We also discuss how the evolving TME modulates tumour cells and CSCs in cancer progression. Using previously described proteomic and genomic platforms, ovarian cancer cell lines and a mouse xenograft model we highlight the existence of metabolic and immune regulatory signatures in chemoresistant ovarian CSCs, and discuss how these processes may affect recurrence in ovarian tumours. We propose that progress in cancer control and eradication may depend not only on the elimination of highly chemoresistant CSCs, but also in designing novel strategies which would intervene with the tumour-promoting TME factors.
Paclitaxel-induced Src activation is inhibited by dasatinib treatment, independently of cancer stem cell properties, in a mouse model of ovarian cancer
- Kadife, Elif, Chan, Emily, Luwor, Rodney, Kannourakis, George, Findlay, Jock, Ahmed, Nuzhat
- Authors: Kadife, Elif , Chan, Emily , Luwor, Rodney , Kannourakis, George , Findlay, Jock , Ahmed, Nuzhat
- Date: 2019
- Type: Text , Journal article
- Relation: Cancers Vol. 11, no. 2 (2019), p. 1-24
- Full Text:
- Reviewed:
- Description: Approximately seventy percent of ovarian cancer patients succumb to the disease within the first 5 years of diagnosis, even after successful surgery and effective chemotherapy treatment. A small subset of chemotherapy resistant cancer stem cells (CSCs) cause relapse of ovarian cancers. This study investigated the association between paclitaxel-mediated Src activation (p-Src) and CSC populations in driving ovarian cancer progression. We demonstrate that patients with high-stage serous ovarian carcinomas have significantly elevated levels of p-Src, compared to patient with low-stage and benign ovarian tumours. Additionally, p-Src was significantly enhanced in ascites-derived tumour cells obtained from recurrent patients, compared to chemonaïve patients. Paclitaxel treatment increased Src activation in ovarian cancer cells, causing enrichment of CSC marker expression in the surviving cells in vitro and in xenografts of nude mice. Dasatinib in combination with paclitaxel significantly suppressed p-Src in ovarian cancer cell lines and xenografts but had no effect on the expression of CSC markers. However, combination of paclitaxel and Dasatinib showed lower trend in invasion in liver and pancreas, compared to paclitaxel-only treatment. The tumours treated with combination therapy also had significantly lower infiltration of mononuclear cells. Robust recurrent tumour growth was observed in all mice groups after termination of treatments. The above results suggest that Dasatinib-mediated inhibition of p-Src may not be crucial for paclitaxel-induced CSC-mediated recurrence in ovarian cancer.
- Authors: Kadife, Elif , Chan, Emily , Luwor, Rodney , Kannourakis, George , Findlay, Jock , Ahmed, Nuzhat
- Date: 2019
- Type: Text , Journal article
- Relation: Cancers Vol. 11, no. 2 (2019), p. 1-24
- Full Text:
- Reviewed:
- Description: Approximately seventy percent of ovarian cancer patients succumb to the disease within the first 5 years of diagnosis, even after successful surgery and effective chemotherapy treatment. A small subset of chemotherapy resistant cancer stem cells (CSCs) cause relapse of ovarian cancers. This study investigated the association between paclitaxel-mediated Src activation (p-Src) and CSC populations in driving ovarian cancer progression. We demonstrate that patients with high-stage serous ovarian carcinomas have significantly elevated levels of p-Src, compared to patient with low-stage and benign ovarian tumours. Additionally, p-Src was significantly enhanced in ascites-derived tumour cells obtained from recurrent patients, compared to chemonaïve patients. Paclitaxel treatment increased Src activation in ovarian cancer cells, causing enrichment of CSC marker expression in the surviving cells in vitro and in xenografts of nude mice. Dasatinib in combination with paclitaxel significantly suppressed p-Src in ovarian cancer cell lines and xenografts but had no effect on the expression of CSC markers. However, combination of paclitaxel and Dasatinib showed lower trend in invasion in liver and pancreas, compared to paclitaxel-only treatment. The tumours treated with combination therapy also had significantly lower infiltration of mononuclear cells. Robust recurrent tumour growth was observed in all mice groups after termination of treatments. The above results suggest that Dasatinib-mediated inhibition of p-Src may not be crucial for paclitaxel-induced CSC-mediated recurrence in ovarian cancer.
Prognostic role of immune checkpoint regulators in cholangiocarcinoma : a pilot study
- Cao, Lu, Prithviraj, Prashanth, Shrestha, Ritu, Sharma, Revati, Kannourakis, George
- Authors: Cao, Lu , Prithviraj, Prashanth , Shrestha, Ritu , Sharma, Revati , Kannourakis, George
- Date: 2021
- Type: Text , Journal article
- Relation: Journal of Clinical Medicine Vol. 10, no. 10 (2021), p.
- Full Text:
- Reviewed:
- Description: Cholangiocarcinoma (CCA) is a hepatobiliary malignancy associated with steadily increasing incidence and poor prognosis. Ongoing clinical trials are assessing the effectiveness and safety of a few immune checkpoint inhibitors (ICIs) in CCA patients. However, these ICI treatments as monotherapies may be effective for a proportion of patients with CCA. The prevalence and distribution of other immune checkpoints (ICs) in CCA remain unclear. In this pilot study, we screened databases of CCA patients for the expression of 19 ICs and assessed the prognostic significance of these ICs in CCA patients. Notably, expression of immune modulator IDO1 and PD-L1 were linked with poor overall survival, while FASLG and NT5E were related to both worse overall survival and progression-free survival. We also identified immune modulators IDO1, FASLG, CD80, HAVCR2, NT5E, CTLA-4, LGALS9, VTCN1 and TNFRSF14 that synergized with PD-L1 and correlated with worse patient outcomes. In vitro studies revealed that the expression of ICs was closely linked with aggressive CCA subpopulations, such as cancer stem cells and cells undergoing TGF-β and TNF-α-mediated epithelial-to-mesenchymal transition. These findings suggest that the aforementioned IC molecules may serve as potential prognostic biomarkers and drug targets in CCA patients, leading to lasting and durable treatment outcomes. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Prashanth Prithviraj, Revati Sharma, George Kannourakis” is provided in this record**
- Authors: Cao, Lu , Prithviraj, Prashanth , Shrestha, Ritu , Sharma, Revati , Kannourakis, George
- Date: 2021
- Type: Text , Journal article
- Relation: Journal of Clinical Medicine Vol. 10, no. 10 (2021), p.
- Full Text:
- Reviewed:
- Description: Cholangiocarcinoma (CCA) is a hepatobiliary malignancy associated with steadily increasing incidence and poor prognosis. Ongoing clinical trials are assessing the effectiveness and safety of a few immune checkpoint inhibitors (ICIs) in CCA patients. However, these ICI treatments as monotherapies may be effective for a proportion of patients with CCA. The prevalence and distribution of other immune checkpoints (ICs) in CCA remain unclear. In this pilot study, we screened databases of CCA patients for the expression of 19 ICs and assessed the prognostic significance of these ICs in CCA patients. Notably, expression of immune modulator IDO1 and PD-L1 were linked with poor overall survival, while FASLG and NT5E were related to both worse overall survival and progression-free survival. We also identified immune modulators IDO1, FASLG, CD80, HAVCR2, NT5E, CTLA-4, LGALS9, VTCN1 and TNFRSF14 that synergized with PD-L1 and correlated with worse patient outcomes. In vitro studies revealed that the expression of ICs was closely linked with aggressive CCA subpopulations, such as cancer stem cells and cells undergoing TGF-β and TNF-α-mediated epithelial-to-mesenchymal transition. These findings suggest that the aforementioned IC molecules may serve as potential prognostic biomarkers and drug targets in CCA patients, leading to lasting and durable treatment outcomes. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Prashanth Prithviraj, Revati Sharma, George Kannourakis” is provided in this record**
- «
- ‹
- 1
- ›
- »