Backbreak prediction in the Chadormalu iron mine using artificial neural network
- Monjezi, Masoud, Ahmadi, Zabiholla, Yazdian-Varjani, Ali, Khandelwal, Manoj
- Authors: Monjezi, Masoud , Ahmadi, Zabiholla , Yazdian-Varjani, Ali , Khandelwal, Manoj
- Date: 2013
- Type: Text , Journal article
- Relation: Neural Computing and Applications Vol. 23, no. 3-4 (2013), p. 1101-1107
- Full Text: false
- Reviewed:
- Description: Backbreak is one of the unfavorable blasting results, which can be defined as the unwanted rock breakage behind the last row of blast holes. Blast pattern parameters, like stemming, burden, delay timing, stiffness ratio (bench height/burden) and rock mass conditions (e.g., geo-mechanical properties and joints), are effective in backbreak intensity. Till date, with the exception of some qualitative guidelines, no specific method has been developed for predicting the phenomenon. In this paper, an effort has been made to apply artificial neural networks (ANNs) for predicting backbreak in the blasting operation of the Chadormalu iron mine (Iran). Number of ANN models with different hidden layers and neurons were tried, and it was found that a network with architecture 10-7-7-1 is the optimum model. A comparative study also approved the superiority of the ANN modeling over the conventional regression analysis. Mean square error (MSE), variance account for (VAF) and coefficient of determination (R 2) between measured and predicted backbreak for the ANN model were calculated and found 89.46 %, 0.714 and 90.02 %, respectively. Also, for the regression model, MSE, VAF and R 2 were computed and found 66.93 %, 1.46 and 68.10 %, respectively. Sensitivity analysis was also carried out to find out the influence of each input parameter on backbreak results, and it was revealed that burden is the most influencing parameter on the backbreak, whereas water content is the least effective parameter in this regard. © 2012 Springer-Verlag London Limited.
Six novel hybrid extreme learning machine–swarm intelligence optimization (ELM–SIO) models for predicting backbreak in open-pit blasting
- Li, Chuanqi, Zhou, Jian, Khandelwal, Manoj, Zhang, Xiliang, Monjezi, Masoud, Qiu, Yingui
- Authors: Li, Chuanqi , Zhou, Jian , Khandelwal, Manoj , Zhang, Xiliang , Monjezi, Masoud , Qiu, Yingui
- Date: 2022
- Type: Text , Journal article
- Relation: Natural Resources Research Vol. 31, no. 5 (2022), p. 3017-3039
- Full Text:
- Reviewed:
- Description: Backbreak (BB) is one of the serious adverse blasting consequences in open-pit mines, because it frequently reduces economic benefits and seriously affects the safety of mines. Therefore, rapid and accurate prediction of BB is of great significance to mine blasting design and other production activities. For this purpose, six different swarm intelligence optimization (SIO) algorithms were proposed to optimize the extreme learning machine (ELM) model for BB prediction, i.e., ELM-based particle swarm optimization (ELM–PSO), ELM-based fruit fly optimization (ELM–FOA), ELM-based whale optimization algorithm (ELM–WOA), ELM-based lion swarm optimization (ELM–LOA), ELM-based seagull optimization algorithm (ELM–SOA) and ELM-based sparrow search algorithm (ELM–SSA). In total, 234 data records from blasting operations in the Sungun mine in Iran were used in this study, including six input parameters (special drilling, spacing, burden, hole length, stemming, powder factor) and one output parameter (i.e., BB). To evaluate the predictive performance of the different optimization models and initial models, six performance indicators including the root mean square error (RMSE), Pearson correlation coefficient (R), determination coefficient (R2), variance accounted for (VAF), mean absolute error (MAE) and sum of square error (SSE) were used to evaluate the models in the training and testing phases. The results show that the ELM–LSO was the best model to predict BB with RMSE of 0.1129 (R: 0.9991, R2: 0.9981, VAF: 99.8135%, MAE: 0.0706 and SSE: 2.0917) in the training phase and 0.2441 in the testing phase (R: 0.9949, R2: 0.9891, VAF: 98.9806%, MAE: 0.1669 and SSE: 4.1710). Hence, ELM techniques combined with SIO algorithms are an effective method to predict BB. © 2022, The Author(s).
- Authors: Li, Chuanqi , Zhou, Jian , Khandelwal, Manoj , Zhang, Xiliang , Monjezi, Masoud , Qiu, Yingui
- Date: 2022
- Type: Text , Journal article
- Relation: Natural Resources Research Vol. 31, no. 5 (2022), p. 3017-3039
- Full Text:
- Reviewed:
- Description: Backbreak (BB) is one of the serious adverse blasting consequences in open-pit mines, because it frequently reduces economic benefits and seriously affects the safety of mines. Therefore, rapid and accurate prediction of BB is of great significance to mine blasting design and other production activities. For this purpose, six different swarm intelligence optimization (SIO) algorithms were proposed to optimize the extreme learning machine (ELM) model for BB prediction, i.e., ELM-based particle swarm optimization (ELM–PSO), ELM-based fruit fly optimization (ELM–FOA), ELM-based whale optimization algorithm (ELM–WOA), ELM-based lion swarm optimization (ELM–LOA), ELM-based seagull optimization algorithm (ELM–SOA) and ELM-based sparrow search algorithm (ELM–SSA). In total, 234 data records from blasting operations in the Sungun mine in Iran were used in this study, including six input parameters (special drilling, spacing, burden, hole length, stemming, powder factor) and one output parameter (i.e., BB). To evaluate the predictive performance of the different optimization models and initial models, six performance indicators including the root mean square error (RMSE), Pearson correlation coefficient (R), determination coefficient (R2), variance accounted for (VAF), mean absolute error (MAE) and sum of square error (SSE) were used to evaluate the models in the training and testing phases. The results show that the ELM–LSO was the best model to predict BB with RMSE of 0.1129 (R: 0.9991, R2: 0.9981, VAF: 99.8135%, MAE: 0.0706 and SSE: 2.0917) in the training phase and 0.2441 in the testing phase (R: 0.9949, R2: 0.9891, VAF: 98.9806%, MAE: 0.1669 and SSE: 4.1710). Hence, ELM techniques combined with SIO algorithms are an effective method to predict BB. © 2022, The Author(s).
Sensitivity analysis on blast design parameters to improve bench blasting outcomes using the Taguchi method
- Hosseini, Mostafa, Khandelwal, Manoj, Lotfi, Rahman, Eslahi, Mohsen
- Authors: Hosseini, Mostafa , Khandelwal, Manoj , Lotfi, Rahman , Eslahi, Mohsen
- Date: 2023
- Type: Text , Journal article
- Relation: Geomechanics and Geophysics for Geo-Energy and Geo-Resources Vol. 9, no. 1 (2023), p.
- Full Text:
- Reviewed:
- Description: In surface mines, bench blasting is a typical way of excavating hard rock mass. Although a significant development has taken place in explosive technology but still only a part of the energy is used to excavate and a large proportion of energy is wasted away and creates a number of nuisances. Backbreak, massive rock fragmentation, and high-intensity ground vibration are all symptoms of improper blasting. As a result, production costs increase significantly while productivity decreases. The blasting outcomes are affected by a variety of factors, which may be classified into three categories: rock properties, explosive properties, and blast geometry. Consequently, it is necessary to examine the effect of these parameters on bench blasting. So, in this study, a sensitivity analysis has been performed on various blast design parameters using the Taguchi method to study the influence of blast design parameters on blast vibration, backbreak, and rock fragmentation. A total of 32 experiments have been designed and numerical modeling was also carried out, using LS DYNA software to simulate the blast results. It was found that the blast hole diameter is the most important factor influencing the blasting outcomes. However, the number of rows in a blast affects backbreak almost slightly more than the hole diameter, but blast vibrations and the surrounding rock damage strongly depend on the hole diameter. Furthermore, rock blast geometry significantly affected rock blast vibration and damage compared to explosive properties. However, both blast geometry parameters and explosive properties play a significant role in backbreaking. © 2023, The Author(s).
- Authors: Hosseini, Mostafa , Khandelwal, Manoj , Lotfi, Rahman , Eslahi, Mohsen
- Date: 2023
- Type: Text , Journal article
- Relation: Geomechanics and Geophysics for Geo-Energy and Geo-Resources Vol. 9, no. 1 (2023), p.
- Full Text:
- Reviewed:
- Description: In surface mines, bench blasting is a typical way of excavating hard rock mass. Although a significant development has taken place in explosive technology but still only a part of the energy is used to excavate and a large proportion of energy is wasted away and creates a number of nuisances. Backbreak, massive rock fragmentation, and high-intensity ground vibration are all symptoms of improper blasting. As a result, production costs increase significantly while productivity decreases. The blasting outcomes are affected by a variety of factors, which may be classified into three categories: rock properties, explosive properties, and blast geometry. Consequently, it is necessary to examine the effect of these parameters on bench blasting. So, in this study, a sensitivity analysis has been performed on various blast design parameters using the Taguchi method to study the influence of blast design parameters on blast vibration, backbreak, and rock fragmentation. A total of 32 experiments have been designed and numerical modeling was also carried out, using LS DYNA software to simulate the blast results. It was found that the blast hole diameter is the most important factor influencing the blasting outcomes. However, the number of rows in a blast affects backbreak almost slightly more than the hole diameter, but blast vibrations and the surrounding rock damage strongly depend on the hole diameter. Furthermore, rock blast geometry significantly affected rock blast vibration and damage compared to explosive properties. However, both blast geometry parameters and explosive properties play a significant role in backbreaking. © 2023, The Author(s).
Performance of hybrid SCA-RF and HHO-RF models for predicting backbreak in open-pit mine blasting operations
- Zhou, Jian, Dai, Yong, Khandelwal, Manoj, Monjezi, Masoud, Yu, Zhi, Qiu, Yingui
- Authors: Zhou, Jian , Dai, Yong , Khandelwal, Manoj , Monjezi, Masoud , Yu, Zhi , Qiu, Yingui
- Date: 2021
- Type: Text , Journal article
- Relation: Natural Resources Research Vol. 30, no. 6 (2021), p. 4753-4771
- Full Text:
- Reviewed:
- Description: Backbreak is an adverse phenomenon in blasting operation, which can cause, among others, mine walls instability, falling down of machinery, drilling efficiency reduction and stripping ratio enhancement. Therefore, this research aimed to develop two-hybrid RF (Random Forest) prediction models of random forest, which are optimized by Harris hawks optimizer (HHO) and sine cosine algorithm (SCA), for estimation of the backbreak distance. The HHO and SCA algorithms were adopted to determine two hyper-parameters (mtry and ntree) in the RF models, in which root mean square error (RMSE) was utilized as a fitness function. A database with 234 samples was established, in which six variables [i.e., hole length (L), burden (B), spacing (S), stemming (T), special drilling (SD) and powder factor (PF)] were used as input variables, and backbreak was defined as output variable. Additionally, three classical regression models (i.e., extreme learning machine, radial basis function network and general regression neural network) were adopted to verify the superiority of the hybrid RF prediction models. The predictive reliability of the proposed models was assessed by the combination of mean absolute error (MAE), RMSE, variance accounted for (VAF) and Pearson correlation coefficient (R2). The results revealed that the SCA-RF model outperformed all the other prediction models with MAE of (0.0444 and 0.0470), RMSE of (0.0816 and 0.0996), VAF of (96.82 and 95.88) and R2 of (0.9876 and 0.9829) in training and testing stages, respectively. A Gini index generated internally in the RF model showed that backbreak was significantly more sensitive to L and T than to SD. © 2021, International Association for Mathematical Geosciences.
- Authors: Zhou, Jian , Dai, Yong , Khandelwal, Manoj , Monjezi, Masoud , Yu, Zhi , Qiu, Yingui
- Date: 2021
- Type: Text , Journal article
- Relation: Natural Resources Research Vol. 30, no. 6 (2021), p. 4753-4771
- Full Text:
- Reviewed:
- Description: Backbreak is an adverse phenomenon in blasting operation, which can cause, among others, mine walls instability, falling down of machinery, drilling efficiency reduction and stripping ratio enhancement. Therefore, this research aimed to develop two-hybrid RF (Random Forest) prediction models of random forest, which are optimized by Harris hawks optimizer (HHO) and sine cosine algorithm (SCA), for estimation of the backbreak distance. The HHO and SCA algorithms were adopted to determine two hyper-parameters (mtry and ntree) in the RF models, in which root mean square error (RMSE) was utilized as a fitness function. A database with 234 samples was established, in which six variables [i.e., hole length (L), burden (B), spacing (S), stemming (T), special drilling (SD) and powder factor (PF)] were used as input variables, and backbreak was defined as output variable. Additionally, three classical regression models (i.e., extreme learning machine, radial basis function network and general regression neural network) were adopted to verify the superiority of the hybrid RF prediction models. The predictive reliability of the proposed models was assessed by the combination of mean absolute error (MAE), RMSE, variance accounted for (VAF) and Pearson correlation coefficient (R2). The results revealed that the SCA-RF model outperformed all the other prediction models with MAE of (0.0444 and 0.0470), RMSE of (0.0816 and 0.0996), VAF of (96.82 and 95.88) and R2 of (0.9876 and 0.9829) in training and testing stages, respectively. A Gini index generated internally in the RF model showed that backbreak was significantly more sensitive to L and T than to SD. © 2021, International Association for Mathematical Geosciences.
Artificial neural network as a tool for backbreak prediction
- Monjezi, Masoud, Hashemi Rizi, S, Majd, Vahdi, Khandelwal, Manoj
- Authors: Monjezi, Masoud , Hashemi Rizi, S , Majd, Vahdi , Khandelwal, Manoj
- Date: 2014
- Type: Text , Journal article
- Relation: Geotechnical and Geological Engineering Vol. 32, no. 1 (2014), p. 21-30
- Full Text: false
- Reviewed:
- Description: Backbreak is one of the destructive side effects of the blasting operation. Reducing of this event is very important for economic of a mining project. Involvement of various parameters has made the backbreak analyzing difficult. Currently there is no any specific method to predict or control the phenomenon considering all the effective parameters. In this paper, artificial neural network (ANN) as a powerful tool for solving such complicated problems is used to predict backbreak in blasting operation of the Sangan iron mine, Iran. Network training was fulfilled using a collected database of the practiced operation including blast design details and rock condition. Trying various types of the networks, a network with two hidden layers was found to be optimum. Performance of the ANN model was compared with statistical analysis using datasets which were kept apart from the original database. According to the obtained results, for the ANN model there existed a higher correlation (R2 = 0.868) and lesser error (RMSE = 0.495) between the predicted and measured backbreak as compared to the regression model. Also, sensitivity analysis revealed that the inputs rock factor and number of rows are the most and the least sensitive parameters on the output backbreak, respectively. © 2013 Springer Science+Business Media Dordrecht.
A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak
- Sayadi, Ahmad, Monjezi, Masoud, Talebi, Nemat, Khandelwal, Manoj
- Authors: Sayadi, Ahmad , Monjezi, Masoud , Talebi, Nemat , Khandelwal, Manoj
- Date: 2013
- Type: Text , Journal article
- Relation: Journal of Rock Mechanics and Geotechnical Engineering Vol. 5, no. 4 (2013), p. 318-324
- Full Text:
- Reviewed:
- Description: In blasting operation, the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak. Therefore, predicting rock fragmentation and backbreak is very important to arrive at a technically and economically successful outcome. Since many parameters affect the blasting results in a complicated mechanism, employment of robust methods such as artificial neural network may be very useful. In this regard, this paper attends to simultaneous prediction of rock fragmentation and backbreak in the blasting operation of Tehran Cement Company limestone mines in Iran. Back propagation neural network (BPNN) and radial basis function neural network (RBFNN) are adopted for the simulation. Also, regression analysis is performed between independent and dependent variables. For the BPNN modeling, a network with architecture 6-10-2 is found to be optimum whereas for the RBFNN, architecture 6-36-2 with spread factor of 0.79 provides maximum prediction aptitude. Performance comparison of the developed models is fulfilled using value account for (VAF), root mean square error (RMSE), determination coefficient (R2) and maximum relative error (MRE). As such, it is observed that the BPNN model is the most preferable model providing maximum accuracy and minimum error. Also, sensitivity analysis shows that inputs burden and stemming are the most effective parameters on the outputs fragmentation and backbreak, respectively. On the other hand, for both of the outputs, specific charge is the least effective parameter. © 2013 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.
- Authors: Sayadi, Ahmad , Monjezi, Masoud , Talebi, Nemat , Khandelwal, Manoj
- Date: 2013
- Type: Text , Journal article
- Relation: Journal of Rock Mechanics and Geotechnical Engineering Vol. 5, no. 4 (2013), p. 318-324
- Full Text:
- Reviewed:
- Description: In blasting operation, the aim is to achieve proper fragmentation and to avoid undesirable events such as backbreak. Therefore, predicting rock fragmentation and backbreak is very important to arrive at a technically and economically successful outcome. Since many parameters affect the blasting results in a complicated mechanism, employment of robust methods such as artificial neural network may be very useful. In this regard, this paper attends to simultaneous prediction of rock fragmentation and backbreak in the blasting operation of Tehran Cement Company limestone mines in Iran. Back propagation neural network (BPNN) and radial basis function neural network (RBFNN) are adopted for the simulation. Also, regression analysis is performed between independent and dependent variables. For the BPNN modeling, a network with architecture 6-10-2 is found to be optimum whereas for the RBFNN, architecture 6-36-2 with spread factor of 0.79 provides maximum prediction aptitude. Performance comparison of the developed models is fulfilled using value account for (VAF), root mean square error (RMSE), determination coefficient (R2) and maximum relative error (MRE). As such, it is observed that the BPNN model is the most preferable model providing maximum accuracy and minimum error. Also, sensitivity analysis shows that inputs burden and stemming are the most effective parameters on the outputs fragmentation and backbreak, respectively. On the other hand, for both of the outputs, specific charge is the least effective parameter. © 2013 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.
Applications of soft computing methods in backbreak assessment in surface mines : a comprehensive review
- Yari, Mojtaba, Khandelwal, Manoj, Abbasi, Payam, Koutras, Evangelos, Armaghani, Danial, Asteris, Panagiotis
- Authors: Yari, Mojtaba , Khandelwal, Manoj , Abbasi, Payam , Koutras, Evangelos , Armaghani, Danial , Asteris, Panagiotis
- Date: 2024
- Type: Text , Journal article , Review
- Relation: CMES - Computer Modeling in Engineering and Sciences Vol. 140, no. 3 (2024), p. 2207-2238
- Full Text:
- Reviewed:
- Description: Geo-engineering problems are known for their complexity and high uncertainty levels, requiring precise definitions, past experiences, logical reasoning, mathematical analysis, and practical insight to address them effectively. Soft Computing (SC) methods have gained popularity in engineering disciplines such as mining and civil engineering due to computer hardware and machine learning advancements. Unlike traditional hard computing approaches, SC models use soft values and fuzzy sets to navigate uncertain environments. This study focuses on the application of SC methods to predict backbreak, a common issue in blasting operations within mining and civil projects. Backbreak, which refers to the unintended fracturing of rock beyond the desired blast perimeter, can significantly impact project timelines and costs. This study aims to explore how SC methods can be effectively employed to anticipate and mitigate the undesirable consequences of blasting operations, specifically focusing on backbreak prediction. The research explores the complexities of backbreak prediction and highlights the potential benefits of utilizing SC methods to address this challenging issue in geo-engineering projects. © 2024 Tech Science Press. All rights reserved.
- Authors: Yari, Mojtaba , Khandelwal, Manoj , Abbasi, Payam , Koutras, Evangelos , Armaghani, Danial , Asteris, Panagiotis
- Date: 2024
- Type: Text , Journal article , Review
- Relation: CMES - Computer Modeling in Engineering and Sciences Vol. 140, no. 3 (2024), p. 2207-2238
- Full Text:
- Reviewed:
- Description: Geo-engineering problems are known for their complexity and high uncertainty levels, requiring precise definitions, past experiences, logical reasoning, mathematical analysis, and practical insight to address them effectively. Soft Computing (SC) methods have gained popularity in engineering disciplines such as mining and civil engineering due to computer hardware and machine learning advancements. Unlike traditional hard computing approaches, SC models use soft values and fuzzy sets to navigate uncertain environments. This study focuses on the application of SC methods to predict backbreak, a common issue in blasting operations within mining and civil projects. Backbreak, which refers to the unintended fracturing of rock beyond the desired blast perimeter, can significantly impact project timelines and costs. This study aims to explore how SC methods can be effectively employed to anticipate and mitigate the undesirable consequences of blasting operations, specifically focusing on backbreak prediction. The research explores the complexities of backbreak prediction and highlights the potential benefits of utilizing SC methods to address this challenging issue in geo-engineering projects. © 2024 Tech Science Press. All rights reserved.
- «
- ‹
- 1
- ›
- »