- Nasser, Nasser, Fadlullah, Zubair, Fouda, Mostafa, Ali, Asmaa, Imran, Muhammad
- Authors: Nasser, Nasser , Fadlullah, Zubair , Fouda, Mostafa , Ali, Asmaa , Imran, Muhammad
- Date: 2022
- Type: Text , Journal article
- Relation: Computer Networks Vol. 205, no. (2022), p.
- Full Text: false
- Reviewed:
- Description: The concept of an intelligent pandemic response network is gaining momentum during the current novel coronavirus disease (COVID-19) era. A heterogeneous communication architecture is essential to facilitate collaborative and intelligent medical analytics in the fifth generation and beyond (B5G) networks to intelligently learn and disseminate pandemic-related information and diagnostic results. However, such a technique raises privacy issues pertaining to the health data of the patients. In this paper, we envision a privacy-preserving pandemic response network using a proof-of-concept, aerial–terrestrial network system serving mobile user entities/equipment (UEs). By leveraging the unmanned aerial vehicles (UAVs), a lightweight federated learning model is proposed to collaboratively yet privately learn medical (e.g., COVID-19) symptoms with high accuracy using the data collected by individual UEs using ambient sensors and wearable devices. An asynchronous weight updating technique is introduced in federated learning to avoid redundant learning and save precious networking as well as computing resources of the UAVs/UEs. A use-case where an Artificial Intelligence (AI)-based model is employed for COVID-19 detection from radiograph images is presented to demonstrate the effectiveness of our proposed approach. © 2021 Elsevier B.V.
6G wireless systems : a vision, architectural elements, and future directions
- Khan, Latif, Yaqoob, Ibrar, Imran, Muhammad, Han, Zhu, Hong, Choong
- Authors: Khan, Latif , Yaqoob, Ibrar , Imran, Muhammad , Han, Zhu , Hong, Choong
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 147029-147044
- Full Text:
- Reviewed:
- Description: Internet of everything (IoE)-based smart services are expected to gain immense popularity in the future, which raises the need for next-generation wireless networks. Although fifth-generation (5G) networks can support various IoE services, they might not be able to completely fulfill the requirements of novel applications. Sixth-generation (6G) wireless systems are envisioned to overcome 5G network limitations. In this article, we explore recent advances made toward enabling 6G systems. We devise a taxonomy based on key enabling technologies, use cases, emerging machine learning schemes, communication technologies, networking technologies, and computing technologies. Furthermore, we identify and discuss open research challenges, such as artificial-intelligence-based adaptive transceivers, intelligent wireless energy harvesting, decentralized and secure business models, intelligent cell-less architecture, and distributed security models. We propose practical guidelines including deep Q-learning and federated learning-based transceivers, blockchain-based secure business models, homomorphic encryption, and distributed-ledger-based authentication schemes to cope with these challenges. Finally, we outline and recommend several future directions. © 2013 IEEE.
- Authors: Khan, Latif , Yaqoob, Ibrar , Imran, Muhammad , Han, Zhu , Hong, Choong
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 147029-147044
- Full Text:
- Reviewed:
- Description: Internet of everything (IoE)-based smart services are expected to gain immense popularity in the future, which raises the need for next-generation wireless networks. Although fifth-generation (5G) networks can support various IoE services, they might not be able to completely fulfill the requirements of novel applications. Sixth-generation (6G) wireless systems are envisioned to overcome 5G network limitations. In this article, we explore recent advances made toward enabling 6G systems. We devise a taxonomy based on key enabling technologies, use cases, emerging machine learning schemes, communication technologies, networking technologies, and computing technologies. Furthermore, we identify and discuss open research challenges, such as artificial-intelligence-based adaptive transceivers, intelligent wireless energy harvesting, decentralized and secure business models, intelligent cell-less architecture, and distributed security models. We propose practical guidelines including deep Q-learning and federated learning-based transceivers, blockchain-based secure business models, homomorphic encryption, and distributed-ledger-based authentication schemes to cope with these challenges. Finally, we outline and recommend several future directions. © 2013 IEEE.
Multi-slope path loss model-based performance assessment of heterogeneous cellular network in 5G
- Dahri, Safia, Shaikh, Muhammad, Alhussein, Musaed, Soomro, Muhammad, Aurangzeb, Khursheed, Imran, Muhammad
- Authors: Dahri, Safia , Shaikh, Muhammad , Alhussein, Musaed , Soomro, Muhammad , Aurangzeb, Khursheed , Imran, Muhammad
- Date: 2023
- Type: Text , Journal article
- Relation: IEEE Access Vol. 11, no. (2023), p. 30473-30485
- Full Text:
- Reviewed:
- Description: The coverage and capacity required for fifth generation (5G) and beyond can be achieved using heterogeneous wireless networks. This exploration set up a limited number of user equipment (UEs) while taking into account the three-dimensional (3D) distance between UEs and base stations (BSs), multi-slope line of sight (LOS) and non-line of sight (n-LOS), idle mode capability (IMC), and third generation partnership projects (3GPP) path loss (PL) models. In the current work, we examine the relationship between the height and gain of the macro (M) and pico (P) base stations (BSs) antennas and the ratio of the density of the MBSs to the PBSs, indicated by the symbol $\beta $. Recent research demonstrates that the antenna height of PBSs should be kept to a minimum to get the best performance in terms of coverage and capacity for a 5G wireless network, whereas ASE smashes as $\beta $ crosses a specific value in 5G. We aim to address these issues and increased the performance of the 5G network by installing directional antennas at MBSs and omnidirectional antennas at Pico BSs while taking into consideration traditional antenna heights. The authors of this work used the multi-tier 3GPP PL model to take into account real-world scenarios and calculated SINR using average power. This study demonstrates that, when the multi-slope 3GPP PL model is used and directional antennas are installed at MBSs, coverage can be improved 10% and area spectral efficiency (ASE) can be improved 2.5 times over the course of the previous analysis. Similarly to this, the issue of an ASE crash after a base station density of 1000 has been resolved in this study. © 2013 IEEE.
- Authors: Dahri, Safia , Shaikh, Muhammad , Alhussein, Musaed , Soomro, Muhammad , Aurangzeb, Khursheed , Imran, Muhammad
- Date: 2023
- Type: Text , Journal article
- Relation: IEEE Access Vol. 11, no. (2023), p. 30473-30485
- Full Text:
- Reviewed:
- Description: The coverage and capacity required for fifth generation (5G) and beyond can be achieved using heterogeneous wireless networks. This exploration set up a limited number of user equipment (UEs) while taking into account the three-dimensional (3D) distance between UEs and base stations (BSs), multi-slope line of sight (LOS) and non-line of sight (n-LOS), idle mode capability (IMC), and third generation partnership projects (3GPP) path loss (PL) models. In the current work, we examine the relationship between the height and gain of the macro (M) and pico (P) base stations (BSs) antennas and the ratio of the density of the MBSs to the PBSs, indicated by the symbol $\beta $. Recent research demonstrates that the antenna height of PBSs should be kept to a minimum to get the best performance in terms of coverage and capacity for a 5G wireless network, whereas ASE smashes as $\beta $ crosses a specific value in 5G. We aim to address these issues and increased the performance of the 5G network by installing directional antennas at MBSs and omnidirectional antennas at Pico BSs while taking into consideration traditional antenna heights. The authors of this work used the multi-tier 3GPP PL model to take into account real-world scenarios and calculated SINR using average power. This study demonstrates that, when the multi-slope 3GPP PL model is used and directional antennas are installed at MBSs, coverage can be improved 10% and area spectral efficiency (ASE) can be improved 2.5 times over the course of the previous analysis. Similarly to this, the issue of an ASE crash after a base station density of 1000 has been resolved in this study. © 2013 IEEE.
Performance and cryptographic evaluation of security protocols in distributed networks using applied pi calculus and Markov Chain
- Edris, Ed, Aiash, Mahdi, Khoshkholghi, Mohammad, Naha, Ranesh, Chowdhury, Abdullahi, Loo, Jonathan
- Authors: Edris, Ed , Aiash, Mahdi , Khoshkholghi, Mohammad , Naha, Ranesh , Chowdhury, Abdullahi , Loo, Jonathan
- Date: 2023
- Type: Text , Journal article
- Relation: Internet of Things (Netherlands) Vol. 24, no. (2023), p.
- Full Text:
- Reviewed:
- Description: The development of cryptographic protocols goes through two stages, namely, security verification and performance analysis. The verification of the protocol's security properties could be analytically achieved using threat modelling, or formally using formal methods and model checkers. The performance analysis could be mathematical or simulation-based. However, mathematical modelling is complicated and does not reflect the actual deployment environment of the protocol in the current state of the art. Simulation software provides scalability and can simulate complicated scenarios, however, there are times when it is not possible to use simulations due to a lack of support for new technologies or simulation scenarios. Therefore, this paper proposes a formal method and analytical model for evaluating the performance of security protocols using applied pi-calculus and Markov Chain processes. It interprets algebraic processes and associates cryptographic operatives with quantitative measures to estimate and evaluate cryptographic costs. With this approach, the protocols are presented as processes using applied pi-calculus, and their security properties are an approximate abstraction of protocol equivalence based on the verification from ProVerif and evaluated using analytical and simulation models for quantitative measures. The interpretation of the quantities is associated with process transitions, rates, and measures as a cost of using cryptographic primitives. This method supports users’ input in analysing the protocol's activities and performance. As a proof of concept, we deploy this approach to assess the performance of security protocols designed to protect large-scale, 5G-based Device-to-Device communications. We also conducted a performance evaluation of the protocols based on analytical and network simulator results to compare the effectiveness of the proposed approach. © 2023 The Author(s)
- Authors: Edris, Ed , Aiash, Mahdi , Khoshkholghi, Mohammad , Naha, Ranesh , Chowdhury, Abdullahi , Loo, Jonathan
- Date: 2023
- Type: Text , Journal article
- Relation: Internet of Things (Netherlands) Vol. 24, no. (2023), p.
- Full Text:
- Reviewed:
- Description: The development of cryptographic protocols goes through two stages, namely, security verification and performance analysis. The verification of the protocol's security properties could be analytically achieved using threat modelling, or formally using formal methods and model checkers. The performance analysis could be mathematical or simulation-based. However, mathematical modelling is complicated and does not reflect the actual deployment environment of the protocol in the current state of the art. Simulation software provides scalability and can simulate complicated scenarios, however, there are times when it is not possible to use simulations due to a lack of support for new technologies or simulation scenarios. Therefore, this paper proposes a formal method and analytical model for evaluating the performance of security protocols using applied pi-calculus and Markov Chain processes. It interprets algebraic processes and associates cryptographic operatives with quantitative measures to estimate and evaluate cryptographic costs. With this approach, the protocols are presented as processes using applied pi-calculus, and their security properties are an approximate abstraction of protocol equivalence based on the verification from ProVerif and evaluated using analytical and simulation models for quantitative measures. The interpretation of the quantities is associated with process transitions, rates, and measures as a cost of using cryptographic primitives. This method supports users’ input in analysing the protocol's activities and performance. As a proof of concept, we deploy this approach to assess the performance of security protocols designed to protect large-scale, 5G-based Device-to-Device communications. We also conducted a performance evaluation of the protocols based on analytical and network simulator results to compare the effectiveness of the proposed approach. © 2023 The Author(s)
Privacy protection and energy optimization for 5G-aided industrial internet of things
- Humayun, Mamoona, Jhanjhi, Nz, Alruwaili, Madallah, Amalathas, Sagaya, Balasubramanian, Venki, Selvaraj, Buvana
- Authors: Humayun, Mamoona , Jhanjhi, Nz , Alruwaili, Madallah , Amalathas, Sagaya , Balasubramanian, Venki , Selvaraj, Buvana
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 183665-183677
- Full Text:
- Reviewed:
- Description: The 5G is expected to revolutionize every sector of life by providing interconnectivity of everything everywhere at high speed. However, massively interconnected devices and fast data transmission will bring the challenge of privacy as well as energy deficiency. In today's fast-paced economy, almost every sector of the economy is dependent on energy resources. On the other hand, the energy sector is mainly dependent on fossil fuels and is constituting about 80% of energy globally. This massive extraction and combustion of fossil fuels lead to a lot of adverse impacts on health, environment, and economy. The newly emerging 5G technology has changed the existing phenomenon of life by connecting everything everywhere using IoT devices. 5G enabled IIoT devices has transformed everything from traditional to smart, e.g. smart city, smart healthcare, smart industry, smart manufacturing etc. However, massive I/O technologies for providing D2D connection has also created the issue of privacy that need to be addressed. Privacy is the fundamental right of every individual. 5G industries and organizations need to preserve it for their stability and competency. Therefore, privacy at all three levels (data, identity and location) need to be maintained. Further, energy optimization is a big challenge that needs to be addressed for leveraging the potential benefits of 5G and 5G aided IIoT. Billions of IIoT devices that are expected to communicate using the 5G network will consume a considerable amount of energy while energy resources are limited. Therefore, energy optimization is a future challenge faced by 5G industries that need to be addressed. To fill these gaps, we have provided a comprehensive framework that will help energy researchers and practitioners in better understanding of 5G aided industry 4.0 infrastructure and energy resource optimization by improving privacy. The proposed framework is evaluated using case studies and mathematical modelling. © 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.
- Authors: Humayun, Mamoona , Jhanjhi, Nz , Alruwaili, Madallah , Amalathas, Sagaya , Balasubramanian, Venki , Selvaraj, Buvana
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 183665-183677
- Full Text:
- Reviewed:
- Description: The 5G is expected to revolutionize every sector of life by providing interconnectivity of everything everywhere at high speed. However, massively interconnected devices and fast data transmission will bring the challenge of privacy as well as energy deficiency. In today's fast-paced economy, almost every sector of the economy is dependent on energy resources. On the other hand, the energy sector is mainly dependent on fossil fuels and is constituting about 80% of energy globally. This massive extraction and combustion of fossil fuels lead to a lot of adverse impacts on health, environment, and economy. The newly emerging 5G technology has changed the existing phenomenon of life by connecting everything everywhere using IoT devices. 5G enabled IIoT devices has transformed everything from traditional to smart, e.g. smart city, smart healthcare, smart industry, smart manufacturing etc. However, massive I/O technologies for providing D2D connection has also created the issue of privacy that need to be addressed. Privacy is the fundamental right of every individual. 5G industries and organizations need to preserve it for their stability and competency. Therefore, privacy at all three levels (data, identity and location) need to be maintained. Further, energy optimization is a big challenge that needs to be addressed for leveraging the potential benefits of 5G and 5G aided IIoT. Billions of IIoT devices that are expected to communicate using the 5G network will consume a considerable amount of energy while energy resources are limited. Therefore, energy optimization is a future challenge faced by 5G industries that need to be addressed. To fill these gaps, we have provided a comprehensive framework that will help energy researchers and practitioners in better understanding of 5G aided industry 4.0 infrastructure and energy resource optimization by improving privacy. The proposed framework is evaluated using case studies and mathematical modelling. © 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.
Security challenges and solutions for 5G HetNet
- Sharma, Aakanksha, Balasubramanian, Venki, Jolfaei, Alireza
- Authors: Sharma, Aakanksha , Balasubramanian, Venki , Jolfaei, Alireza
- Date: 2020
- Type: Text , Conference paper
- Relation: 19th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) p. 1318-1323
- Full Text: false
- Reviewed:
- Description: The exponential growth of smartphones and other smart communicating devices has led to the proliferation of the Internet of Things (IoT) applications. Literature shows, one person will have more than six intelligent connected devices in future. The existing network infrastructure and bandwidth will be unable to accommodate the growing number of smart connected devices, therefore, achieving the expected Quality of Service (QoS) and Quality of Experience (QoE) remains a challenge. The advent and deployment of 5G network bring a massive number of innovative network services and exceptional user experience by providing superior data rates. Despite numerous benefits that 5G offers, the security and privacy in 5G is a challenge due to the existing large number of heterogeneous networks (HetNet). To harvest the numerous benefits of 5G, it is imperative to provide adequate protection mechanisms to maintain the user and data privacy in growing HetNet. This article comprehensively addresses the existing security issues in 5G HetNet and solutions for the identified problems in the HetNet edge. © 2020 IEEE.
Software-defined networks for resource allocation in cloud computing : a survey
- Mohamed, Arwa, Hamdan, Mosab, Khan, Suleman, Abdelaziz, Abdelaziz, Babiker, Sharief, Imran, Muhammad, Marsono, Muhammad
- Authors: Mohamed, Arwa , Hamdan, Mosab , Khan, Suleman , Abdelaziz, Abdelaziz , Babiker, Sharief , Imran, Muhammad , Marsono, Muhammad
- Date: 2021
- Type: Text , Journal article
- Relation: Computer Networks Vol. 195, no. (2021), p.
- Full Text:
- Reviewed:
- Description: Cloud computing has a shared set of resources, including physical servers, networks, storage, and user applications. Resource allocation is a critical issue for cloud computing, especially in Infrastructure-as-a-Service (IaaS). The decision-making process in the cloud computing network is non-trivial as it is handled by switches and routers. Moreover, the network concept drifts resulting from changing user demands are among the problems affecting cloud computing. The cloud data center needs agile and elastic network control functions with control of computing resources to ensure proper virtual machine (VM) operations, traffic performance, and energy conservation. Software-Defined Network (SDN) proffers new opportunities to blueprint resource management to handle cloud services allocation while dynamically updating traffic requirements of running VMs. The inclusion of an SDN for managing the infrastructure in a cloud data center better empowers cloud computing, making it easier to allocate resources. In this survey, we discuss and survey resource allocation in cloud computing based on SDN. It is noted that various related studies did not contain all the required requirements. This study is intended to enhance resource allocation mechanisms that involve both cloud computing and SDN domains. Consequently, we analyze resource allocation mechanisms utilized by various researchers; we categorize and evaluate them based on the measured parameters and the problems presented. This survey also contributes to a better understanding of the core of current research that will allow researchers to obtain further information about the possible cloud computing strategies relevant to IaaS resource allocation. © 2021
- Authors: Mohamed, Arwa , Hamdan, Mosab , Khan, Suleman , Abdelaziz, Abdelaziz , Babiker, Sharief , Imran, Muhammad , Marsono, Muhammad
- Date: 2021
- Type: Text , Journal article
- Relation: Computer Networks Vol. 195, no. (2021), p.
- Full Text:
- Reviewed:
- Description: Cloud computing has a shared set of resources, including physical servers, networks, storage, and user applications. Resource allocation is a critical issue for cloud computing, especially in Infrastructure-as-a-Service (IaaS). The decision-making process in the cloud computing network is non-trivial as it is handled by switches and routers. Moreover, the network concept drifts resulting from changing user demands are among the problems affecting cloud computing. The cloud data center needs agile and elastic network control functions with control of computing resources to ensure proper virtual machine (VM) operations, traffic performance, and energy conservation. Software-Defined Network (SDN) proffers new opportunities to blueprint resource management to handle cloud services allocation while dynamically updating traffic requirements of running VMs. The inclusion of an SDN for managing the infrastructure in a cloud data center better empowers cloud computing, making it easier to allocate resources. In this survey, we discuss and survey resource allocation in cloud computing based on SDN. It is noted that various related studies did not contain all the required requirements. This study is intended to enhance resource allocation mechanisms that involve both cloud computing and SDN domains. Consequently, we analyze resource allocation mechanisms utilized by various researchers; we categorize and evaluate them based on the measured parameters and the problems presented. This survey also contributes to a better understanding of the core of current research that will allow researchers to obtain further information about the possible cloud computing strategies relevant to IaaS resource allocation. © 2021
- «
- ‹
- 1
- ›
- »