An adaptive and flexible brain energized full body exoskeleton with IoT edge for assisting the paralyzed patients
- Jacob, Sunil, Alagirisamy, Mukil, Menon, Varun, Kumar, B. Manoj, Balasubramanian, Venki
- Authors: Jacob, Sunil , Alagirisamy, Mukil , Menon, Varun , Kumar, B. Manoj , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 100721-100731
- Full Text:
- Reviewed:
- Description: The paralyzed population is increasing worldwide due to stroke, spinal code injury, post-polio, and other related diseases. Different assistive technologies are used to improve the physical and mental health of the affected patients. Exoskeletons have emerged as one of the most promising technology to provide movement and rehabilitation for the paralyzed. But exoskeletons are limited by the constraints of weight, flexibility, and adaptability. To resolve these issues, we propose an adaptive and flexible Brain Energized Full Body Exoskeleton (BFBE) for assisting the paralyzed people. This paper describes the design, control, and testing of BFBE with 15 degrees of freedom (DoF) for assisting the users in their daily activities. The flexibility is incorporated into the system by a modular design approach. The brain signals captured by the Electroencephalogram (EEG) sensors are used for controlling the movements of BFBE. The processing happens at the edge, reducing delay in decision making and the system is further integrated with an IoT module that helps to send an alert message to multiple caregivers in case of an emergency. The potential energy harvesting is used in the system to solve the power issues related to the exoskeleton. The stability in the gait cycle is ensured by using adaptive sensory feedback. The system validation is done by using six natural movements on ten different paralyzed persons. The system recognizes human intensions with an accuracy of 85%. The result shows that BFBE can be an efficient method for providing assistance and rehabilitation for paralyzed patients. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramanian” is provided in this record**
- Authors: Jacob, Sunil , Alagirisamy, Mukil , Menon, Varun , Kumar, B. Manoj , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 100721-100731
- Full Text:
- Reviewed:
- Description: The paralyzed population is increasing worldwide due to stroke, spinal code injury, post-polio, and other related diseases. Different assistive technologies are used to improve the physical and mental health of the affected patients. Exoskeletons have emerged as one of the most promising technology to provide movement and rehabilitation for the paralyzed. But exoskeletons are limited by the constraints of weight, flexibility, and adaptability. To resolve these issues, we propose an adaptive and flexible Brain Energized Full Body Exoskeleton (BFBE) for assisting the paralyzed people. This paper describes the design, control, and testing of BFBE with 15 degrees of freedom (DoF) for assisting the users in their daily activities. The flexibility is incorporated into the system by a modular design approach. The brain signals captured by the Electroencephalogram (EEG) sensors are used for controlling the movements of BFBE. The processing happens at the edge, reducing delay in decision making and the system is further integrated with an IoT module that helps to send an alert message to multiple caregivers in case of an emergency. The potential energy harvesting is used in the system to solve the power issues related to the exoskeleton. The stability in the gait cycle is ensured by using adaptive sensory feedback. The system validation is done by using six natural movements on ten different paralyzed persons. The system recognizes human intensions with an accuracy of 85%. The result shows that BFBE can be an efficient method for providing assistance and rehabilitation for paralyzed patients. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramanian” is provided in this record**
A secured framework for SDN-based edge computing in IoT-enabled healthcare system
- Li, Junxia, Cai, Jinjin, Khan, Fazlullah, Rehman, Ateeq, Balasubramanian, Venki
- Authors: Li, Junxia , Cai, Jinjin , Khan, Fazlullah , Rehman, Ateeq , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 135479-135490
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) consists of resource-constrained smart devices capable to sense and process data. It connects a huge number of smart sensing devices, i.e., things, and heterogeneous networks. The IoT is incorporated into different applications, such as smart health, smart home, smart grid, etc. The concept of smart healthcare has emerged in different countries, where pilot projects of healthcare facilities are analyzed. In IoT-enabled healthcare systems, the security of IoT devices and associated data is very important, whereas Edge computing is a promising architecture that solves their computational and processing problems. Edge computing is economical and has the potential to provide low latency data services by improving the communication and computation speed of IoT devices in a healthcare system. In Edge-based IoT-enabled healthcare systems, load balancing, network optimization, and efficient resource utilization are accurately performed using artificial intelligence (AI), i.e., intelligent software-defined network (SDN) controller. SDN-based Edge computing is helpful in the efficient utilization of limited resources of IoT devices. However, these low powered devices and associated data (private sensitive data of patients) are prone to various security threats. Therefore, in this paper, we design a secure framework for SDN-based Edge computing in IoT-enabled healthcare system. In the proposed framework, the IoT devices are authenticated by the Edge servers using a lightweight authentication scheme. After authentication, these devices collect data from the patients and send them to the Edge servers for storage, processing, and analyses. The Edge servers are connected with an SDN controller, which performs load balancing, network optimization, and efficient resource utilization in the healthcare system. The proposed framework is evaluated using computer-based simulations. The results demonstrate that the proposed framework provides better solutions for IoT-enabled healthcare systems. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramaniam” is provided in this record**
- Authors: Li, Junxia , Cai, Jinjin , Khan, Fazlullah , Rehman, Ateeq , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 135479-135490
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) consists of resource-constrained smart devices capable to sense and process data. It connects a huge number of smart sensing devices, i.e., things, and heterogeneous networks. The IoT is incorporated into different applications, such as smart health, smart home, smart grid, etc. The concept of smart healthcare has emerged in different countries, where pilot projects of healthcare facilities are analyzed. In IoT-enabled healthcare systems, the security of IoT devices and associated data is very important, whereas Edge computing is a promising architecture that solves their computational and processing problems. Edge computing is economical and has the potential to provide low latency data services by improving the communication and computation speed of IoT devices in a healthcare system. In Edge-based IoT-enabled healthcare systems, load balancing, network optimization, and efficient resource utilization are accurately performed using artificial intelligence (AI), i.e., intelligent software-defined network (SDN) controller. SDN-based Edge computing is helpful in the efficient utilization of limited resources of IoT devices. However, these low powered devices and associated data (private sensitive data of patients) are prone to various security threats. Therefore, in this paper, we design a secure framework for SDN-based Edge computing in IoT-enabled healthcare system. In the proposed framework, the IoT devices are authenticated by the Edge servers using a lightweight authentication scheme. After authentication, these devices collect data from the patients and send them to the Edge servers for storage, processing, and analyses. The Edge servers are connected with an SDN controller, which performs load balancing, network optimization, and efficient resource utilization in the healthcare system. The proposed framework is evaluated using computer-based simulations. The results demonstrate that the proposed framework provides better solutions for IoT-enabled healthcare systems. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramaniam” is provided in this record**
- Tang, Hao, Li, Di, Wan, Jiafu, Imran, Muhammad, Shoaib, Muhammad
- Authors: Tang, Hao , Li, Di , Wan, Jiafu , Imran, Muhammad , Shoaib, Muhammad
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Internet of Things Journal Vol. 7, no. 5 (2020), p. 4248-4259
- Full Text: false
- Reviewed:
- Description: The development of Industry 4.0 has provided the possibility to meet frequent changes in product type and batches, a sharp decline in the delivery cycle, constraints of quality cost, and other relevant parameters of customized production mode. Intelligent manufacturing, as a core of Industry 4.0, represents a deep integration of new IT technologies, such as the industrial Internet of Things and service-oriented architecture, and manufacturing process. To realize intelligent manufacturing, this article introduces a cloud-assisted and edge-decision-making manufacturing architecture that contains a cloud and production edges. An intelligent production edge is designed to provide the traditional devices the abilities of data access and self-decision making. Besides, the proposed architecture is modeled as a multiagent system with the edge intelligence support, describing the agent-based reconfiguration mechanism from the three aspects, namely, agent interaction, agent behavior, and negotiation mechanism. The experimental results show that the reconfigurable method based on the proposed architecture can be used in the mixed-flow production scenario based on random orders, to improve the adaptability and robustness. © 2014 IEEE.
RaSEC : an intelligent framework for reliable and secure multilevel edge computing in industrial environments
- Usman, Muhammad, Jolfaei, Alireza, Jan, Mian
- Authors: Usman, Muhammad , Jolfaei, Alireza , Jan, Mian
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Transactions on Industry Applications Vol. 56, no. 4 (2020), p. 4543-4551
- Full Text:
- Reviewed:
- Description: Industrial applications generate big data with redundant information that is transmitted over heterogeneous networks. The transmission of big data with redundant information not only increases the overall end-to-end delay but also increases the computational load on servers which affects the performance of industrial applications. To address these challenges, we propose an intelligent framework named Reliable and Secure multi-level Edge Computing (RaSEC), which operates in three phases. In the first phase, level-one edge devices apply a lightweight aggregation technique on the generated data. This technique not only reduces the size of the generated data but also helps in preserving the privacy of data sources. In the second phase, a multistep process is used to register level-two edge devices (LTEDs) with high-level edge devices (HLEDs). Due to the registration process, only legitimate LTEDs can forward data to the HLEDs, and as a result, the computational load on HLEDs decreases. In the third phase, the HLEDs use a convolutional neural network to detect the presence of moving objects in the data forwarded by LTEDs. If a movement is detected, the data is uploaded to the cloud servers for further analysis; otherwise, the data is discarded to minimize the use of computational resources on cloud computing platforms. The proposed framework reduces the response time by forwarding useful information to the cloud servers and can be utilized by various industrial applications. Our theoretical and experimental results confirm the resiliency of our framework with respect to security and privacy threats. © 1972-2012 IEEE.
- Authors: Usman, Muhammad , Jolfaei, Alireza , Jan, Mian
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Transactions on Industry Applications Vol. 56, no. 4 (2020), p. 4543-4551
- Full Text:
- Reviewed:
- Description: Industrial applications generate big data with redundant information that is transmitted over heterogeneous networks. The transmission of big data with redundant information not only increases the overall end-to-end delay but also increases the computational load on servers which affects the performance of industrial applications. To address these challenges, we propose an intelligent framework named Reliable and Secure multi-level Edge Computing (RaSEC), which operates in three phases. In the first phase, level-one edge devices apply a lightweight aggregation technique on the generated data. This technique not only reduces the size of the generated data but also helps in preserving the privacy of data sources. In the second phase, a multistep process is used to register level-two edge devices (LTEDs) with high-level edge devices (HLEDs). Due to the registration process, only legitimate LTEDs can forward data to the HLEDs, and as a result, the computational load on HLEDs decreases. In the third phase, the HLEDs use a convolutional neural network to detect the presence of moving objects in the data forwarded by LTEDs. If a movement is detected, the data is uploaded to the cloud servers for further analysis; otherwise, the data is discarded to minimize the use of computational resources on cloud computing platforms. The proposed framework reduces the response time by forwarding useful information to the cloud servers and can be utilized by various industrial applications. Our theoretical and experimental results confirm the resiliency of our framework with respect to security and privacy threats. © 1972-2012 IEEE.
- Rafique, Wajid, Qi, Lianyong, Yaqoob, Ibrar, Imran, Muhammad, Rasool, Raojan, Dou, Wanchun
- Authors: Rafique, Wajid , Qi, Lianyong , Yaqoob, Ibrar , Imran, Muhammad , Rasool, Raojan , Dou, Wanchun
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Communications Surveys and Tutorials Vol. 22, no. 3 (2020), p. 1761-1804
- Full Text: false
- Reviewed:
- Description: Millions of sensors continuously produce and transmit data to control real-world infrastructures using complex networks in the Internet of Things (IoT). However, IoT devices are limited in computational power, including storage, processing, and communication resources, to effectively perform compute-intensive tasks locally. Edge computing resolves the resource limitation problems by bringing computation closer to the edge of IoT devices. Providing distributed edge nodes across the network reduces the stress of centralized computation and overcomes latency challenges in the IoT. Therefore, edge computing presents low-cost solutions for compute-intensive tasks. Software-Defined Networking (SDN) enables effective network management by presenting a global perspective of the network. While SDN was not explicitly developed for IoT challenges, it can, however, provide impetus to solve the complexity issues and help in efficient IoT service orchestration. The current IoT paradigm of massive data generation, complex infrastructures, security vulnerabilities, and requirements from the newly developed technologies make IoT realization a challenging issue. In this research, we provide an extensive survey on SDN and the edge computing ecosystem to solve the challenge of complex IoT management. We present the latest research on Software-Defined Internet of Things orchestration using Edge (SDIoT-Edge) and highlight key requirements and standardization efforts in integrating these diverse architectures. An extensive discussion on different case studies using SDIoT-Edge computing is presented to envision the underlying concept. Furthermore, we classify state-of-the-art research in the SDIoT-Edge ecosystem based on multiple performance parameters. We comprehensively present security and privacy vulnerabilities in the SDIoT-Edge computing and provide detailed taxonomies of multiple attack possibilities in this paradigm. We highlight the lessons learned based on our findings at the end of each section. Finally, we discuss critical insights toward current research issues, challenges, and further research directions to efficiently provide IoT services in the SDIoT-Edge paradigm. © 1998-2012 IEEE.
Cloudlet computing : recent advances, taxonomy, and challenges
- Babar, Mohammad, Khan, Muhammad, Ali, Farman, Imran, Muhammad, Shoaib, Muhammad
- Authors: Babar, Mohammad , Khan, Muhammad , Ali, Farman , Imran, Muhammad , Shoaib, Muhammad
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Access Vol. 9, no. (2021), p. 29609-29622
- Full Text:
- Reviewed:
- Description: A cloudlet is an emerging computing paradigm that is designed to meet the requirements and expectations of the Internet of things (IoT) and tackle the conventional limitations of a cloud (e.g., high latency). The idea is to bring computing resources (i.e., storage and processing) to the edge of a network. This article presents a taxonomy of cloudlet applications, outlines cloudlet utilities, and describes recent advances, challenges, and future research directions. Based on the literature, a unique taxonomy of cloudlet applications is designed. Moreover, a cloudlet computation offloading application for augmenting resource-constrained IoT devices, handling compute-intensive tasks, and minimizing the energy consumption of related devices is explored. This study also highlights the viability of cloudlets to support smart systems and applications, such as augmented reality, virtual reality, and applications that require high-quality service. Finally, the role of cloudlets in emergency situations, hostile conditions, and in the technological integration of future applications and services is elaborated in detail. © 2013 IEEE.
- Authors: Babar, Mohammad , Khan, Muhammad , Ali, Farman , Imran, Muhammad , Shoaib, Muhammad
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Access Vol. 9, no. (2021), p. 29609-29622
- Full Text:
- Reviewed:
- Description: A cloudlet is an emerging computing paradigm that is designed to meet the requirements and expectations of the Internet of things (IoT) and tackle the conventional limitations of a cloud (e.g., high latency). The idea is to bring computing resources (i.e., storage and processing) to the edge of a network. This article presents a taxonomy of cloudlet applications, outlines cloudlet utilities, and describes recent advances, challenges, and future research directions. Based on the literature, a unique taxonomy of cloudlet applications is designed. Moreover, a cloudlet computation offloading application for augmenting resource-constrained IoT devices, handling compute-intensive tasks, and minimizing the energy consumption of related devices is explored. This study also highlights the viability of cloudlets to support smart systems and applications, such as augmented reality, virtual reality, and applications that require high-quality service. Finally, the role of cloudlets in emergency situations, hostile conditions, and in the technological integration of future applications and services is elaborated in detail. © 2013 IEEE.
Edge computing for Internet of Everything : a survey
- Kong, Xiangjie, Wu, Yuhan, Wang, Hui, Xia, Feng
- Authors: Kong, Xiangjie , Wu, Yuhan , Wang, Hui , Xia, Feng
- Date: 2022
- Type: Text , Journal article
- Relation: IEEE Internet of Things Journal Vol. 9, no. 23 (2022), p. 23472-23485
- Full Text:
- Reviewed:
- Description: In this era of the Internet of Everything (IoE), edge computing has emerged as the critical enabling technology to solve a series of issues caused by an increasing amount of interconnected devices and large-scale data transmission. However, the deficiencies of edge computing paradigm are gradually being magnified in the context of IoE, especially in terms of service migration, security and privacy preservation, and deployment issues of edge node. These issues can not be well addressed by conventional approaches. Thanks to the rapid development of upcoming technologies, such as artificial intelligence (AI), blockchain, and microservices, novel and more effective solutions have emerged and been applied to solve existing challenges. In addition, edge computing can be deeply integrated with technologies in other domains (e.g., AI, blockchain, 6G, and digital twin) through interdisciplinary intersection and practice, releasing the potential for mutual benefit. These promising integrations need to be further explored and researched. In addition, edge computing provides strong support in applications scenarios, such as remote working, new physical retail industries, and digital advertising, which has greatly changed the way we live, work, and study. In this article, we present an up-to-date survey of the edge computing research. In addition to introducing the definition, model, and characteristics of edge computing, we discuss a set of key issues in edge computing and novel solutions supported by emerging technologies in IoE era. Furthermore, we explore the potential and promising trends from the perspective of technology integration. Finally, new application scenarios and the final form of edge computing are discussed. © 2014 IEEE.
- Authors: Kong, Xiangjie , Wu, Yuhan , Wang, Hui , Xia, Feng
- Date: 2022
- Type: Text , Journal article
- Relation: IEEE Internet of Things Journal Vol. 9, no. 23 (2022), p. 23472-23485
- Full Text:
- Reviewed:
- Description: In this era of the Internet of Everything (IoE), edge computing has emerged as the critical enabling technology to solve a series of issues caused by an increasing amount of interconnected devices and large-scale data transmission. However, the deficiencies of edge computing paradigm are gradually being magnified in the context of IoE, especially in terms of service migration, security and privacy preservation, and deployment issues of edge node. These issues can not be well addressed by conventional approaches. Thanks to the rapid development of upcoming technologies, such as artificial intelligence (AI), blockchain, and microservices, novel and more effective solutions have emerged and been applied to solve existing challenges. In addition, edge computing can be deeply integrated with technologies in other domains (e.g., AI, blockchain, 6G, and digital twin) through interdisciplinary intersection and practice, releasing the potential for mutual benefit. These promising integrations need to be further explored and researched. In addition, edge computing provides strong support in applications scenarios, such as remote working, new physical retail industries, and digital advertising, which has greatly changed the way we live, work, and study. In this article, we present an up-to-date survey of the edge computing research. In addition to introducing the definition, model, and characteristics of edge computing, we discuss a set of key issues in edge computing and novel solutions supported by emerging technologies in IoE era. Furthermore, we explore the potential and promising trends from the perspective of technology integration. Finally, new application scenarios and the final form of edge computing are discussed. © 2014 IEEE.
- «
- ‹
- 1
- ›
- »