Your selections:

18Miller, Mirka
8Lin, Yuqing
5Balbuena, Camino
4Ryan, Joe
3Gimbert, Joan
3Nguyen, Minh Hoang
3Sugeng, Kiki Ariyanti
2Aytar, Salih
2Baca, Martin
2Barker, Ewan
2Mammadov, Musa
2Pehlivan, Serpil
2Pineda-Villavicencio, Guillermo
2Tang, Jianmin
2Yost, David
1Baskoro, Edy
1Burachik, Regina
1Cholily, Yus Mochamad
1Das, K. C.
1Dmitruk, Andrei

Show More

Show Less

9Graph theory
4Moore bound
4Number theory
3Numerical methods
3Problem solving
2Almost Moore digraph
2Banach space
2Connectivity
2Constraint qualification
2Degree/diameter problem
2Diameter
2Finite difference method
2Fuzzy numbers
2Genetic algorithms
2Integer programming
2Labeling
2Selfrepeats
2Simulated annealing
2Vertex connectivity

Show More

Show Less

Format Type

Improved lower bound for the vertex connectivity of (delta;g)-cages

- Lin, Yuqing, Miller, Mirka, Balbuena, Camino

**Authors:**Lin, Yuqing , Miller, Mirka , Balbuena, Camino**Date:**2005**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 299, no. 1-3 (Aug 2005), p. 162-171**Full Text:**false**Reviewed:****Description:**A (delta, g)-cage is a delta-regular graph with girth g and with the least possible number of vertices. We prove that all (delta, g)-cages are r-connected with r >= root(delta + 1) for g >= 7 odd. This result supports the conjecture of Fu, Huang and Rodger that all (delta; g)-cages are delta-connected. (c) 2005 Elsevier B.V. All rights reserved.**Description:**C1**Description:**2003001397

Enumerations of vertex orders of almost Moore digraphs with selfrepeats

- Baskoro, Edy, Cholily, Yus Mochamad, Miller, Mirka

**Authors:**Baskoro, Edy , Cholily, Yus Mochamad , Miller, Mirka**Date:**2008**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 308, no. 1 (2008), p. 123-128**Full Text:**false**Reviewed:****Description:**An almost Moore digraph G of degree d > 1, diameter k > 1 is a diregular digraph with the number of vertices one less than the Moore bound. If G is an almost Moore digraph, then for each vertex u ∈ V (G) there exists a vertex v ∈ V (G), called repeat of u and denoted by r (u) = v, such that there are two walks of length ≤ k from u to v. The smallest positive integer p such that the composition rp (u) = u is called the order of u. If the order of u is 1 then u is called a selfrepeat. It is known that if G is an almost Moore digraph of diameter k ≥ 3 then G contains exactly k selfrepeats or none. In this paper, we propose an exact formula for the number of all vertex orders in an almost Moore digraph G containing selfrepeats, based on the vertex orders of the out-neighbours of any selfrepeat vertex. © 2007 Elsevier B.V. All rights reserved.**Description:**C1

Characterization of eccentric digraphs

- Gimbert, Joan, Lopez, Nacho, Miller, Mirka, Ryan, Joe

**Authors:**Gimbert, Joan , Lopez, Nacho , Miller, Mirka , Ryan, Joe**Date:**2006**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 306, no. 2 (2006), p. 210-219**Full Text:**false**Reviewed:****Description:**The eccentric digraph ED(G) of a digraph G represents the binary relation, defined on the vertex set of G, of being 'eccentric'; that is, there is an arc from u to v in ED(G) if and only if v is at maximum distance from u in G. A digraph G is said to be eccentric if there exists a digraph H such that G=ED(H). This paper is devoted to the study of the following two questions: what digraphs are eccentric and when the relation of being eccentric is symmetric. We present a characterization of eccentric digraphs, which in the undirected case says that a graph G is eccentric iff its complement graph G is either self-centered of radius two or it is the union of complete graphs. As a consequence, we obtain that all trees except those with diameter 3 are eccentric digraphs. We also determine when ED(G) is symmetric in the cases when G is a graph or a digraph that is not strongly connected. Crown Copyright © 2006 Published by Elsevier B.V. All rights reserved.**Description:**C1**Description:**2003001601

On the connectivity of (k, g)-cages of even girth

- Lin, Yuqing, Balbuena, Camino, Marcote, Xavier, Miller, Mirka

**Authors:**Lin, Yuqing , Balbuena, Camino , Marcote, Xavier , Miller, Mirka**Date:**2008**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 308, no. 15 (2008), p. 3249-3256**Full Text:**false**Reviewed:****Description:**A (k,g)-cage is a k-regular graph with girth g and with the least possible number of vertices. In this paper we give a brief overview of the current results on the connectivity of (k,g)-cages and we improve the current known best lower bound on the vertex connectivity of (k,g)-cages for g even. © 2007 Elsevier B.V. All rights reserved.**Description:**C1

Moore bound for mixed networks

- Nguyen, Minh Hoang, Miller, Mirka

**Authors:**Nguyen, Minh Hoang , Miller, Mirka**Date:**2008**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 308, no. 23 (Dec 2008), p. 5499-5503**Full Text:**false**Reviewed:****Description:**Mixed graphs contain both undirected as well as directed links between vertices and therefore are an interesting model for interconnection communication networks. In this paper, we establish the Moore bound for mixed graphs, which generalizes both the directed and the undirected Moore bound. Crown Copyright (C) 2007 Published by Elsevier B.V. All rights reserved.

Necessary and sufficient conditions for stable conjugate duality

- Burachik, Regina, Jeyakumar, Vaithilingam, Wu, Zhiyou

**Authors:**Burachik, Regina , Jeyakumar, Vaithilingam , Wu, Zhiyou**Date:**2006**Type:**Text , Journal article**Relation:**Journal of Nonlinear Analysis Vol. 64, no. 9 (2006), p. 1998-2005**Full Text:****Reviewed:****Description:**The conjugate duality, which states that infx∈X φ(x, 0) = maxv∈Y ' −φ∗(0,v), whenever a regularity condition on φ is satisﬁed, is a key result in convex anal¬ysis and optimization, where φ : X × Y → IR ∪{+∞} is a convex function, X and Y are Banach spaces, Y ' is the continuous dual space of Y and φ∗ is the Fenchel-Moreau conjugate of φ. In this paper, we establish a necessary and suﬃcient condition for the stable conjugate duality, ∗ ∗ ∈ X' inf {φ(x, 0) + x ∗(x)} = max {−φ ∗(−x ,v)}, ∀x, x∈Xv∈Y ' and obtain a new global dual regularity condition, which is much more general than the popularly known interior-point type conditions, for the conjugate duality. As a consequence we present an epigraph closure condition which is necessary and suﬃcient for a stable Fenchel-Rockafellar duality theorem. In the case where one of the functions involved in the duality is a polyhedral convex function, we also provide generalized interior-point conditions for the epigraph closure condition. Moreover, we show that a stable Fenchel’s duality for sublinear functions holds whenever a subdiﬀerential sum formula for the functions holds. As applications, we give general suﬃcient conditions for a minimax theorem, a subdiﬀerential composition formula and for duality results of convex programming problems.**Description:**C1**Description:**2003003596

**Authors:**Burachik, Regina , Jeyakumar, Vaithilingam , Wu, Zhiyou**Date:**2006**Type:**Text , Journal article**Relation:**Journal of Nonlinear Analysis Vol. 64, no. 9 (2006), p. 1998-2005**Full Text:****Reviewed:****Description:**The conjugate duality, which states that infx∈X φ(x, 0) = maxv∈Y ' −φ∗(0,v), whenever a regularity condition on φ is satisﬁed, is a key result in convex anal¬ysis and optimization, where φ : X × Y → IR ∪{+∞} is a convex function, X and Y are Banach spaces, Y ' is the continuous dual space of Y and φ∗ is the Fenchel-Moreau conjugate of φ. In this paper, we establish a necessary and suﬃcient condition for the stable conjugate duality, ∗ ∗ ∈ X' inf {φ(x, 0) + x ∗(x)} = max {−φ ∗(−x ,v)}, ∀x, x∈Xv∈Y ' and obtain a new global dual regularity condition, which is much more general than the popularly known interior-point type conditions, for the conjugate duality. As a consequence we present an epigraph closure condition which is necessary and suﬃcient for a stable Fenchel-Rockafellar duality theorem. In the case where one of the functions involved in the duality is a polyhedral convex function, we also provide generalized interior-point conditions for the epigraph closure condition. Moreover, we show that a stable Fenchel’s duality for sublinear functions holds whenever a subdiﬀerential sum formula for the functions holds. As applications, we give general suﬃcient conditions for a minimax theorem, a subdiﬀerential composition formula and for duality results of convex programming problems.**Description:**C1**Description:**2003003596

The core of a sequence of fuzzy numbers

- Aytar, Salih, Pehlivan, Serpil, Mammadov, Musa

**Authors:**Aytar, Salih , Pehlivan, Serpil , Mammadov, Musa**Date:**2008**Type:**Text , Journal article**Relation:**Fuzzy Sets and Systems Vol. 159, no. 24 (2008), p. 3369-3379**Full Text:**false**Reviewed:****Description:**In this paper, based on level sets we define the limit inferior and limit superior of a bounded sequence of fuzzy numbers and prove some properties. We extend the concept of the core of a sequence of complex numbers, first introduced by Knopp in 1930, to a bounded sequence of fuzzy numbers and prove that the core of a sequence of fuzzy numbers is the interval [ν, μ] where ν and μ are extreme limit points of the sequence. © 2008 Elsevier B.V. All rights reserved.

Colocality and twisted sums of Banach spaces

- Jebreen, H. M., Jamjoom, F. B. H., Yost, David

**Authors:**Jebreen, H. M. , Jamjoom, F. B. H. , Yost, David**Date:**2006**Type:**Text , Journal article**Relation:**Journal of Mathematical Analysis and Applications Vol. 323, no. 2 (2006), p. 864-875**Full Text:****Reviewed:****Description:**Using the relation between subspaces of Banach spaces and quotients of their duals, we introduce the concept of colocality to give a new method that guarantees the existence of nontrivial twisted sums in which finite quotients play a major role (Theorem 1.7). An interesting point is that no restrictions are imposed on the quotients, only on the various subspaces. New examples of nontrivial twisted sums are given.**Description:**C1**Description:**2003001831

**Authors:**Jebreen, H. M. , Jamjoom, F. B. H. , Yost, David**Date:**2006**Type:**Text , Journal article**Relation:**Journal of Mathematical Analysis and Applications Vol. 323, no. 2 (2006), p. 864-875**Full Text:****Reviewed:****Description:**Using the relation between subspaces of Banach spaces and quotients of their duals, we introduce the concept of colocality to give a new method that guarantees the existence of nontrivial twisted sums in which finite quotients play a major role (Theorem 1.7). An interesting point is that no restrictions are imposed on the quotients, only on the various subspaces. New examples of nontrivial twisted sums are given.**Description:**C1**Description:**2003001831

On irregular total labellings

- Baca, Martin, Jendrol, Stanislav, Miller, Mirka, Ryan, Joe

**Authors:**Baca, Martin , Jendrol, Stanislav , Miller, Mirka , Ryan, Joe**Date:**2007**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 307, no. 11-12 (May 2007), p. 1378-1388**Full Text:****Reviewed:****Description:**Two new graph characteristics, the total vertex irregularity strength and the total edge irregularity strength, are introduced. Estimations on these parameters are obtained. For some families of graphs the precise values of these parameters are proved. (c) 2006 Elsevier B.V. All rights reserved.**Description:**C1**Description:**2003004909

**Authors:**Baca, Martin , Jendrol, Stanislav , Miller, Mirka , Ryan, Joe**Date:**2007**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 307, no. 11-12 (May 2007), p. 1378-1388**Full Text:****Reviewed:****Description:**Two new graph characteristics, the total vertex irregularity strength and the total edge irregularity strength, are introduced. Estimations on these parameters are obtained. For some families of graphs the precise values of these parameters are proved. (c) 2006 Elsevier B.V. All rights reserved.**Description:**C1**Description:**2003004909

- Baca, Martin, Lin, Yuqing, Miller, Mirka, Youssef, Maged

**Authors:**Baca, Martin , Lin, Yuqing , Miller, Mirka , Youssef, Maged**Date:**2007**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 307, no. 11-12 (May 2007), p. 1232-1244**Full Text:**false**Reviewed:****Description:**For a graph G = (V, E), a bijection g from V(G) boolean OR E(G) into {1, 2,..., vertical bar V(G)vertical bar + vertical bar E(G)vertical bar} is called (a, d)-edge-antimagic total labeling of G if the edge-weights w(xy) = g(x) + g(y) + g(xy), xy E E(G), form an arithmetic progression starting from a and having common difference d. An (a, d)-edge-antimagic total labeling is called super (a, d)-edge-antimagic total if g(V(G)) = {1, 2,..., vertical bar V(G)vertical bar}. We study super (a, d)-edge-antimagic properties of certain classes of graphs, including friendship graphs, wheels, fans, complete graphs and complete bipartite graphs. (c) 2006 Elsevier B.V. All rights reserved.**Description:**2003004910

Lower bound theorems for general polytopes

- Pineda-Villavicencio, Guillermo, Ugon, Julien, Yost, David

**Authors:**Pineda-Villavicencio, Guillermo , Ugon, Julien , Yost, David**Date:**2019**Type:**Text , Journal article**Relation:**European Journal of Combinatorics Vol. 79, no. (2019), p. 27-45**Full Text:****Reviewed:****Description:**For a d-dimensional polytope with v vertices, d + 1 <= v <= 2d, we calculate precisely the minimum possible number of m-dimensional faces, when m = 1 or m >= 0.62d. This confirms a conjecture of Grunbaum, for these values of m. For v = 2d + 1, we solve the same problem when m = 1 or d - 2; the solution was already known for m = d - 1. In all these cases, we give a characterisation of the minimising polytopes. We also show that there are many gaps in the possible number of m-faces: for example, there is no polytope with 80 edges in dimension 10, and a polytope with 407 edges can have dimension at most 23.

**Authors:**Pineda-Villavicencio, Guillermo , Ugon, Julien , Yost, David**Date:**2019**Type:**Text , Journal article**Relation:**European Journal of Combinatorics Vol. 79, no. (2019), p. 27-45**Full Text:****Reviewed:****Description:**For a d-dimensional polytope with v vertices, d + 1 <= v <= 2d, we calculate precisely the minimum possible number of m-dimensional faces, when m = 1 or m >= 0.62d. This confirms a conjecture of Grunbaum, for these values of m. For v = 2d + 1, we solve the same problem when m = 1 or d - 2; the solution was already known for m = d - 1. In all these cases, we give a characterisation of the minimising polytopes. We also show that there are many gaps in the possible number of m-faces: for example, there is no polytope with 80 edges in dimension 10, and a polytope with 407 edges can have dimension at most 23.

A topological group observation on the Banach-Mazur separable quotient problem

- Gabriyelyan, Saak, Morris, Sidney

**Authors:**Gabriyelyan, Saak , Morris, Sidney**Date:**2019**Type:**Text , Journal article**Relation:**Topology and Its Applications Vol. 259, no. (2019), p. 283-286**Full Text:****Reviewed:****Description:**The Separable Quotient Problem of Banach and Mazur asks if every infinite-dimensional Banach space has an infinite-dimensional separable quotient Banach space. It has remained unsolved for 85 years but has been answered in the affirmative for special cases such as reflexive Banach spaces. An affirmative answer to the Separable Quotient Problem would obviously imply that every infinite-dimensional Banach space has a quotient topological group which is separable, metrizable, and infinite-dimensional in the sense of topology. In this paper it is proved that every infinite-dimensional Banach space has as a quotient group the separable metrizable infinite-dimensional topological group, T

**Authors:**Gabriyelyan, Saak , Morris, Sidney**Date:**2019**Type:**Text , Journal article**Relation:**Topology and Its Applications Vol. 259, no. (2019), p. 283-286**Full Text:****Reviewed:****Description:**The Separable Quotient Problem of Banach and Mazur asks if every infinite-dimensional Banach space has an infinite-dimensional separable quotient Banach space. It has remained unsolved for 85 years but has been answered in the affirmative for special cases such as reflexive Banach spaces. An affirmative answer to the Separable Quotient Problem would obviously imply that every infinite-dimensional Banach space has a quotient topological group which is separable, metrizable, and infinite-dimensional in the sense of topology. In this paper it is proved that every infinite-dimensional Banach space has as a quotient group the separable metrizable infinite-dimensional topological group, T

- Balbuena, Camino, Barker, Ewan, Lin, Yuqing, Miller, Mirka, Sugeng, Kiki Ariyanti

**Authors:**Balbuena, Camino , Barker, Ewan , Lin, Yuqing , Miller, Mirka , Sugeng, Kiki Ariyanti**Date:**2006**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 306, no. 16 (2006), p. 1817-1829**Full Text:**false**Reviewed:****Description:**Let G be a graph of order n and size e. A vertex-magic total labeling is an assignment of the integers 1, 2, ..., n + e to the vertices and the edges of G, so that at each vertex, the vertex label and the labels on the edges incident at that vertex, add to a fixed constant, called the magic number of G. Such a labeling is a-vertex consecutive magic if the set of the labels of the vertices is { a + 1, a + 2, ..., a + n }, and is b-edge consecutive magic if the set of labels of the edges is { b + 1, b + 2, ..., b + e }. In this paper we prove that if an a-vertex consecutive magic graph has isolated vertices then the order and the size satisfy (n - 1)**Description:**C1**Description:**2003001604

Diameter-sufficient conditions for a graph to be super-restricted connected

- Balbuena, Camino, Lin, Yuqing, Miller, Mirka

**Authors:**Balbuena, Camino , Lin, Yuqing , Miller, Mirka**Date:**2007**Type:**Text , Journal article**Relation:**Discrete Applied Mathematics Vol. , no. (2007), p.**Full Text:**false**Reviewed:****Description:**A vertex-cut X is said to be a restricted cut of a graph G if it is a vertex-cut such that no vertex u in G has all its neighbors in X. Clearly, each connected component of G - X must have at least two vertices. The restricted connectivity**Description:**C1

On the degrees of a strongly vertex-magic graph

- Balbuena, Camino, Barker, Ewan, Das, K. C., Lin, Yuqing, Miller, Mirka, Ryan, Joe, Slamin,, Sugeng, Kiki Ariyanti, Tkac, M.

**Authors:**Balbuena, Camino , Barker, Ewan , Das, K. C. , Lin, Yuqing , Miller, Mirka , Ryan, Joe , Slamin, , Sugeng, Kiki Ariyanti , Tkac, M.**Date:**2006**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 306, no. 6 (2006), p. 539-551**Full Text:**false**Reviewed:****Description:**Let G=(V,E) be a finite graph, where |V|=n≥2 and |E|=e≥1. A vertex-magic total labeling is a bijection λ from V∪E to the set of consecutive integers {1,2,...,n+e} with the property that for every v∈V, λ(v)+∑w∈N(v)λ(vw)=h for some constant h. Such a labeling is strong if λ(V)={1,2,...,n}. In this paper, we prove first that the minimum degree of a strongly vertex-magic graph is at least two. Next, we show that if 2e≥10n2-6n+1, then the minimum degree of a strongly vertex-magic graph is at least three. Further, we obtain upper and lower bounds of any vertex degree in terms of n and e. As a consequence we show that a strongly vertex-magic graph is maximally edge-connected and hamiltonian if the number of edges is large enough. Finally, we prove that semi-regular bipartite graphs are not strongly vertex-magic graphs, and we provide strongly vertex-magic total labeling of certain families of circulant graphs. © 2006 Elsevier B.V. All rights reserved**Description:**C1**Description:**2003001603

Structural properties of graphs of diameter 2 with maximal repeats

- Nguyen, Minh Hoang, Miller, Mirka

**Authors:**Nguyen, Minh Hoang , Miller, Mirka**Date:**2008**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 308, no. 11 (Jun 2008), p. 2337-2341**Full Text:**false**Reviewed:****Description:**It was shown using eigenvalue analysis by Erdos et al. that with the exception of C-4, there are no graphs of diameter 2, of maximum degree d and of order d(2), that is, one less than the Moore bound. These graphs belong to a class of regular graphs of diameter 2, and having certain interesting structural properties, which will be proved in this paper. (c) 2007 Elsevier B.V. All rights reserved.**Description:**C1

Metric regularity and systems of generalized equations

- Dmitruk, Andrei, Kruger, Alexander

**Authors:**Dmitruk, Andrei , Kruger, Alexander**Date:**2008**Type:**Text , Journal article**Relation:**Journal of Mathematical Analysis and Applications Vol. 342, no. 2 (2008), p. 864-873**Full Text:****Reviewed:****Description:**The paper is devoted to a revision of the metric regularity property for mappings between metric or Banach spaces. Some new concepts are introduced: uniform metric regularity and metric multi-regularity for mappings into product spaces, when each component is perturbed independently. Regularity criteria are established based on a nonlocal version of Lyusternik-Graves theorem due to Milyutin. The criteria are applied to systems of generalized equations producing some "error bound" type estimates. © 2007 Elsevier Inc. All rights reserved.

**Authors:**Dmitruk, Andrei , Kruger, Alexander**Date:**2008**Type:**Text , Journal article**Relation:**Journal of Mathematical Analysis and Applications Vol. 342, no. 2 (2008), p. 864-873**Full Text:****Reviewed:****Description:**The paper is devoted to a revision of the metric regularity property for mappings between metric or Banach spaces. Some new concepts are introduced: uniform metric regularity and metric multi-regularity for mappings into product spaces, when each component is perturbed independently. Regularity criteria are established based on a nonlocal version of Lyusternik-Graves theorem due to Milyutin. The criteria are applied to systems of generalized equations producing some "error bound" type estimates. © 2007 Elsevier Inc. All rights reserved.

HSAGA and its application for the construction of near-Moore digraphs

- Tang, Jianmin, Miller, Mirka, Lin, Yuqing

**Authors:**Tang, Jianmin , Miller, Mirka , Lin, Yuqing**Date:**2008**Type:**Text , Journal article**Relation:**Journal of Discrete Algorithms Vol. 6, no. 1 (2008), p. 73-84**Full Text:**false**Reviewed:****Description:**The degree/diameter problem is to determine the largest graphs or digraphs of given maximum degree and given diameter. This paper deals with directed graphs. General upper bounds, called Moore bounds, exist for the largest possible order of such digraphs of maximum degree d and given diameter k. It is known that simulated annealing and genetic algorithm are effective techniques to identify global optimal solutions. This paper describes our attempt to build a Hybrid Simulated Annealing and Genetic Algorithm (HSAGA) that can be used to construct large digraphs. We present our new results obtained by HSAGA, as well as several related open problems. © 2007 Elsevier B.V. All rights reserved.**Description:**C1

A sum labelling for the generalised friendship graph

- Fernau, Henning, Ryan, Joe, Sugeng, Kiki Ariyanti

**Authors:**Fernau, Henning , Ryan, Joe , Sugeng, Kiki Ariyanti**Date:**2008**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 308, no. 5-6 (2008), p. 734-740**Full Text:**false**Reviewed:****Description:**We provide an optimal sum labelling scheme for the generalised friendship graph, also known as the flower (a symmetric collection of cycles meeting at a common vertex) and show that its sum number is 2. © 2007 Elsevier B.V. All rights reserved.**Description:**C1

- Nguyen, Minh Hoang, Miller, Mirka, Gimbert, Joan

**Authors:**Nguyen, Minh Hoang , Miller, Mirka , Gimbert, Joan**Date:**2007**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 307, no. 7-8 (2007), p. 964-970**Full Text:**false**Reviewed:****Description:**The Moore bound for a directed graph of maximum out-degree d and diameter k is M**Description:**C1**Description:**2003005024

Are you sure you would like to clear your session, including search history and login status?