- Charchar, Fadi, Kaiser, Michael, Bingham, Andrew, Fotinatos, Nina, Ahmady, Fahima, Tomaszewski, Maciej, Samani, Nilesh
- Authors: Charchar, Fadi , Kaiser, Michael , Bingham, Andrew , Fotinatos, Nina , Ahmady, Fahima , Tomaszewski, Maciej , Samani, Nilesh
- Date: 2010
- Type: Text , Journal article
- Relation: Hypertension Vol. 55, no. 5 (2010), p. 1231-1238
- Full Text: false
- Reviewed:
- Description: Copy number variation has emerged recently as an important genetic mechanism leading to phenotypic heterogeneity. The aim of our study was to determine whether copy number variants (CNVs) exist between the spontaneously hypertensive rat (SHR) and its control strain, the Wistar-Kyoto rat, whether these map to quantitative trait loci in the rat and whether CNVs associate with gene expression or blood pressure differences between the 2 strains. We performed a comparative genomic hybridization assay between SHR and Wistar-Kyoto strains using a whole-genome array. In total, 16 CNVs were identified and validated (6 because of a relative loss of copy number in the SHR and 10 because of a relative gain). CNVs were present on rat autosomes 1, 3, 4, 6, 7, 10, 14, and 17 and varied in size from 10.0 kb to 1.6 Mb. Most of these CNVs mapped to chromosomal regions within previously identified quantitative trait loci, including those for blood pressure in the SHR. Transcriptomic experiment! s confirmed differences in the renal expression of several genes (including Ms4a6a, Ndr3, Egln1, Cd36, Sema3a, Ugt2b, and Idi21) located in some of the CNVs between STIR and Wistar-Kyoto rats. In F-2 animals derived from an SHRXWistar-Kyoto cross, we also found a significant increase in blood pressure associated with an increase in copy number in the Egln1 gene. Our findings suggest that, CNVs may play a role in the susceptibility to hypertension and related trails in the SHR. (Hypertension. 2010;55:1231-1238.)
Experimental and human evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin NGAL ) in the development of cardiac hypertrophy and heart failure
- Marques, Francine, Prestes, Priscilla, Byars, Sean, Ritchie, Scott, Wurtz, Peter, Patel, Sheila, Booth, Scott, Rana, Indrajeetsinh, Minoda, Yosuke, Berzins, Stuart, Curl, Claire, Bell, James, Wai, Bryan, Srivastava, Piyush, Kangas, Antti, Soininen, Pasi, Ruohonen, Saku, Kahonen, Mika, Lehtimaki, Terho, Raitoharju, Emma, Havulinna, Aki, Perola, Markus, Raitakari, Olli, Salomaa, Veikko, Ala-Korpela, Mika, Kettunen, Johannes, McGlynn, Maree, Kelly, Jason, Wlodek, Mary, Lewandowski, Paul, Delbridge, Lea, Burrell, Louise, Inouye, Michael, Harrap, Stephen, Charchar, Fadi
- Authors: Marques, Francine , Prestes, Priscilla , Byars, Sean , Ritchie, Scott , Wurtz, Peter , Patel, Sheila , Booth, Scott , Rana, Indrajeetsinh , Minoda, Yosuke , Berzins, Stuart , Curl, Claire , Bell, James , Wai, Bryan , Srivastava, Piyush , Kangas, Antti , Soininen, Pasi , Ruohonen, Saku , Kahonen, Mika , Lehtimaki, Terho , Raitoharju, Emma , Havulinna, Aki , Perola, Markus , Raitakari, Olli , Salomaa, Veikko , Ala-Korpela, Mika , Kettunen, Johannes , McGlynn, Maree , Kelly, Jason , Wlodek, Mary , Lewandowski, Paul , Delbridge, Lea , Burrell, Louise , Inouye, Michael , Harrap, Stephen , Charchar, Fadi
- Date: 2017
- Type: Text , Journal article
- Relation: Journal of the American Heart Association Vol. 6, no. 6 (2017), p. 1-58
- Relation: http://purl.org/au-research/grants/nhmrc/1034371
- Full Text:
- Reviewed:
- Description: Background-Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. Methods and Results-We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2-knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2-knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis-eQTL for LCN2 expression. Conclusions-Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure.
- Authors: Marques, Francine , Prestes, Priscilla , Byars, Sean , Ritchie, Scott , Wurtz, Peter , Patel, Sheila , Booth, Scott , Rana, Indrajeetsinh , Minoda, Yosuke , Berzins, Stuart , Curl, Claire , Bell, James , Wai, Bryan , Srivastava, Piyush , Kangas, Antti , Soininen, Pasi , Ruohonen, Saku , Kahonen, Mika , Lehtimaki, Terho , Raitoharju, Emma , Havulinna, Aki , Perola, Markus , Raitakari, Olli , Salomaa, Veikko , Ala-Korpela, Mika , Kettunen, Johannes , McGlynn, Maree , Kelly, Jason , Wlodek, Mary , Lewandowski, Paul , Delbridge, Lea , Burrell, Louise , Inouye, Michael , Harrap, Stephen , Charchar, Fadi
- Date: 2017
- Type: Text , Journal article
- Relation: Journal of the American Heart Association Vol. 6, no. 6 (2017), p. 1-58
- Relation: http://purl.org/au-research/grants/nhmrc/1034371
- Full Text:
- Reviewed:
- Description: Background-Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. Methods and Results-We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2-knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2-knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis-eQTL for LCN2 expression. Conclusions-Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure.
- «
- ‹
- 1
- ›
- »