Your selections:

30101 Pure Mathematics
3Graph theory
3Theorem proving
2Connectivity
1(k,g)-cage
1Algorithms
1Bipartite Moore bound
1Bipartite Moore graphs
1Bounded diameter
1Defect
1Degree diameter problem for bipartite graphs
1Degree/diameter problem
1Digraphs
1Edge-connectivity
1Girth pair
1Matrix algebra
1Moore bound
1Number theory
1Numerical methods
1Problem solving

Show More

Show Less

Format Type

A lower bound on the order of regular graphs with given girth pair

- Balbuena, Camino, Jiang, T., Lin, Yuqing, Marcote, Xavier, Miller, Mirka

**Authors:**Balbuena, Camino , Jiang, T. , Lin, Yuqing , Marcote, Xavier , Miller, Mirka**Date:**2007**Type:**Text , Journal article**Relation:**Journal of Graph Theory Vol. 55, no. 2 (2007), p. 153-163**Full Text:**false**Reviewed:****Description:**The girth pair of a graph gives the length of a shortest odd and a shortest even cycle. The existence of regular graphs with given degree and girth pair was proved by Harary and Kovács [Regular graphs with given girth pair, J Graph Theory 7 (1983), 209-218]. A (**Description:**C1**Description:**2003004727

Complete characterization of almost moore digraphs of degree three

- Baskoro, Edy, Miller, Mirka, Siran, Jozef, Sutton, Martin

**Authors:**Baskoro, Edy , Miller, Mirka , Siran, Jozef , Sutton, Martin**Date:**2005**Type:**Text , Journal article**Relation:**Journal of Graph Theory Vol. 48, no. 2 (2005), p. 112-126**Full Text:**false**Reviewed:****Description:**It is well known that Moore digraphs do not exist except for trivial cases (degree 1 or diameter 1), but there are digraphs of diameter two and arbitrary degree which miss the Moore bound by one. No examples of such digraphs of diameter at least three are known, although several necessary conditions for their existence have been obtained. In this paper, we prove that digraphs of degree three and diameter k ≥ 3 which miss the Moore bound by one do not exist. © 2004 Wiley Periodicals, Inc.**Description:**C1**Description:**2003000904

All (k;g)-cages are k-edge-connected

- Lin, Yuqing, Miller, Mirka, Rodger, Chris

**Authors:**Lin, Yuqing , Miller, Mirka , Rodger, Chris**Date:**2005**Type:**Text , Journal article**Relation:**Journal of Graph Theory Vol. 48, no. 3 (2005), p. 219-227**Full Text:**false**Reviewed:****Description:**A (k;g)-cage is a k-regular graph with girth g and with the least possible number of vertices. In this paper, we prove that (k;g)-cages are k-edge-connected if g is even. Earlier, Wang, Xu, and Wang proved that (k;g)-cages are k-edge-connected if g is odd. Combining our results, we conclude that the (k;g)-cages are k-edge-connected. © 2005 wiley Periodicals, Inc.**Description:**C1

On bipartite graphs of diameter 3 and defect 2

- Delorme, Charles, Jorgensen, Leif, Miller, Mirka, Pineda-Villavicencio, Guillermo

**Authors:**Delorme, Charles , Jorgensen, Leif , Miller, Mirka , Pineda-Villavicencio, Guillermo**Date:**2009**Type:**Text , Journal article**Relation:**Journal of Graph Theory Vol. 61, no. 4 (2009), p. 271-288**Full Text:****Reviewed:****Description:**We consider bipartite graphs of degree A<2, diameter D = 3, and defect 2 (having 2 vertices less than the bipartite Moore bound). Such graphs are called bipartite (â–³,3, -2) -graphs. We prove the uniqueness of the known bipartite (3, 3, -2) -graph and bipartite (4, 3, -2)-graph. We also prove several necessary conditions for the existence of bipartite (â–³,3, -2) - graphs. The most general of these conditions is that either â–³ or â–³-2 must be a perfect square. Furthermore, in some cases for which the condition holds, in particular, when â–³ = 6 and â–³ = 9, we prove the non-existence of the corresponding bipartite (â–³,3,-2)-graphs, thus establishing that there are no bipartite (â–³,3, -2)-graphs, for 5

**Authors:**Delorme, Charles , Jorgensen, Leif , Miller, Mirka , Pineda-Villavicencio, Guillermo**Date:**2009**Type:**Text , Journal article**Relation:**Journal of Graph Theory Vol. 61, no. 4 (2009), p. 271-288**Full Text:****Reviewed:****Description:**We consider bipartite graphs of degree A<2, diameter D = 3, and defect 2 (having 2 vertices less than the bipartite Moore bound). Such graphs are called bipartite (â–³,3, -2) -graphs. We prove the uniqueness of the known bipartite (3, 3, -2) -graph and bipartite (4, 3, -2)-graph. We also prove several necessary conditions for the existence of bipartite (â–³,3, -2) - graphs. The most general of these conditions is that either â–³ or â–³-2 must be a perfect square. Furthermore, in some cases for which the condition holds, in particular, when â–³ = 6 and â–³ = 9, we prove the non-existence of the corresponding bipartite (â–³,3,-2)-graphs, thus establishing that there are no bipartite (â–³,3, -2)-graphs, for 5

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?