Matching algorithms : fundamentals, applications and challenges
- Ren, Jing, Xia, Feng, Chen, Xiangtai, Liu, Jiaying, Sultanova, Nargiz
- Authors: Ren, Jing , Xia, Feng , Chen, Xiangtai , Liu, Jiaying , Sultanova, Nargiz
- Date: 2021
- Type: Text , Journal article , Review
- Relation: IEEE Transactions on Emerging Topics in Computational Intelligence Vol. 5, no. 3 (2021), p. 332-350
- Full Text:
- Reviewed:
- Description: Matching plays a vital role in the rational allocation of resources in many areas, ranging from market operation to people's daily lives. In economics, the term matching theory is coined for pairing two agents in a specific market to reach a stable or optimal state. In computer science, all branches of matching problems have emerged, such as the question-answer matching in information retrieval, user-item matching in a recommender system, and entity-relation matching in the knowledge graph. A preference list is the core element during a matching process, which can either be obtained directly from the agents or generated indirectly by prediction. Based on the preference list access, matching problems are divided into two categories, i.e., explicit matching and implicit matching. In this paper, we first introduce the matching theory's basic models and algorithms in explicit matching. The existing methods for coping with various matching problems in implicit matching are reviewed, such as retrieval matching, user-item matching, entity-relation matching, and image matching. Furthermore, we look into representative applications in these areas, including marriage and labor markets in explicit matching and several similarity-based matching problems in implicit matching. Finally, this survey paper concludes with a discussion of open issues and promising future directions in the field of matching. © 2017 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Jing Ren, Xia Feng, Nargiz Sultanova" is provided in this record**
- Authors: Ren, Jing , Xia, Feng , Chen, Xiangtai , Liu, Jiaying , Sultanova, Nargiz
- Date: 2021
- Type: Text , Journal article , Review
- Relation: IEEE Transactions on Emerging Topics in Computational Intelligence Vol. 5, no. 3 (2021), p. 332-350
- Full Text:
- Reviewed:
- Description: Matching plays a vital role in the rational allocation of resources in many areas, ranging from market operation to people's daily lives. In economics, the term matching theory is coined for pairing two agents in a specific market to reach a stable or optimal state. In computer science, all branches of matching problems have emerged, such as the question-answer matching in information retrieval, user-item matching in a recommender system, and entity-relation matching in the knowledge graph. A preference list is the core element during a matching process, which can either be obtained directly from the agents or generated indirectly by prediction. Based on the preference list access, matching problems are divided into two categories, i.e., explicit matching and implicit matching. In this paper, we first introduce the matching theory's basic models and algorithms in explicit matching. The existing methods for coping with various matching problems in implicit matching are reviewed, such as retrieval matching, user-item matching, entity-relation matching, and image matching. Furthermore, we look into representative applications in these areas, including marriage and labor markets in explicit matching and several similarity-based matching problems in implicit matching. Finally, this survey paper concludes with a discussion of open issues and promising future directions in the field of matching. © 2017 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Jing Ren, Xia Feng, Nargiz Sultanova" is provided in this record**
VRConvMF : visual recurrent convolutional matrix factorization for movie ecommendation
- Wang, Zhu, Chen, Honglong, Li, Zhe, Lin, Kai, Jiang, Nan, Xia, Feng
- Authors: Wang, Zhu , Chen, Honglong , Li, Zhe , Lin, Kai , Jiang, Nan , Xia, Feng
- Date: 2022
- Type: Text , Journal article
- Relation: IEEE Transactions on Emerging Topics in Computational Intelligence Vol. 6, no. 3 (2022), p. 519-529
- Full Text:
- Reviewed:
- Description: Sparsity of user-to-item rating data becomes one of challenging issues in the recommender systems, which severely deteriorates the recommendation performance. Fortunately, context-aware recommender systems can alleviate the sparsity problem by making use of some auxiliary information, such as the information of both the users and items. In particular, the visual information of items, such as the movie poster, can be considered as the supplement for item description documents, which helps to obtain more item features. In this paper, we focus on movie recommender system and propose a probabilistic matrix factorization based recommendation scheme called visual recurrent convolutional matrix factorization (VRConvMF), which utilizes the textual and multi-level visual features extracted from the descriptive texts and posters respectively. We implement the proposed VRConvMF and conduct extensive experiments on three commonly used real world datasets to validate its effectiveness. The experimental results illustrate that the proposed VRConvMF outperforms the existing schemes. © 2017 IEEE.
- Authors: Wang, Zhu , Chen, Honglong , Li, Zhe , Lin, Kai , Jiang, Nan , Xia, Feng
- Date: 2022
- Type: Text , Journal article
- Relation: IEEE Transactions on Emerging Topics in Computational Intelligence Vol. 6, no. 3 (2022), p. 519-529
- Full Text:
- Reviewed:
- Description: Sparsity of user-to-item rating data becomes one of challenging issues in the recommender systems, which severely deteriorates the recommendation performance. Fortunately, context-aware recommender systems can alleviate the sparsity problem by making use of some auxiliary information, such as the information of both the users and items. In particular, the visual information of items, such as the movie poster, can be considered as the supplement for item description documents, which helps to obtain more item features. In this paper, we focus on movie recommender system and propose a probabilistic matrix factorization based recommendation scheme called visual recurrent convolutional matrix factorization (VRConvMF), which utilizes the textual and multi-level visual features extracted from the descriptive texts and posters respectively. We implement the proposed VRConvMF and conduct extensive experiments on three commonly used real world datasets to validate its effectiveness. The experimental results illustrate that the proposed VRConvMF outperforms the existing schemes. © 2017 IEEE.
Random walks : a review of algorithms and applications
- Xia, Feng, Liu, Jiaying, Nie, Hansong, Fu, Yonghao, Wan, Liangtian, Kong, Xiangjie
- Authors: Xia, Feng , Liu, Jiaying , Nie, Hansong , Fu, Yonghao , Wan, Liangtian , Kong, Xiangjie
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Transactions on Emerging Topics in Computational Intelligence Vol. 4, no. 2 (2020), p. 95-107
- Full Text:
- Reviewed:
- Description: A random walk is known as a random process which describes a path including a succession of random steps in the mathematical space. It has increasingly been popular in various disciplines such as mathematics and computer science. Furthermore, in quantum mechanics, quantum walks can be regarded as quantum analogues of classical random walks. Classical random walks and quantum walks can be used to calculate the proximity between nodes and extract the topology in the network. Various random walk related models can be applied in different fields, which is of great significance to downstream tasks such as link prediction, recommendation, computer vision, semi-supervised learning, and network embedding. In this article, we aim to provide a comprehensive review of classical random walks and quantum walks. We first review the knowledge of classical random walks and quantum walks, including basic concepts and some typical algorithms. We also compare the algorithms based on quantum walks and classical random walks from the perspective of time complexity. Then we introduce their applications in the field of computer science. Finally we discuss the open issues from the perspectives of efficiency, main-memory volume, and computing time of existing algorithms. This study aims to contribute to this growing area of research by exploring random walks and quantum walks together. © 2017 IEEE.
- Authors: Xia, Feng , Liu, Jiaying , Nie, Hansong , Fu, Yonghao , Wan, Liangtian , Kong, Xiangjie
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Transactions on Emerging Topics in Computational Intelligence Vol. 4, no. 2 (2020), p. 95-107
- Full Text:
- Reviewed:
- Description: A random walk is known as a random process which describes a path including a succession of random steps in the mathematical space. It has increasingly been popular in various disciplines such as mathematics and computer science. Furthermore, in quantum mechanics, quantum walks can be regarded as quantum analogues of classical random walks. Classical random walks and quantum walks can be used to calculate the proximity between nodes and extract the topology in the network. Various random walk related models can be applied in different fields, which is of great significance to downstream tasks such as link prediction, recommendation, computer vision, semi-supervised learning, and network embedding. In this article, we aim to provide a comprehensive review of classical random walks and quantum walks. We first review the knowledge of classical random walks and quantum walks, including basic concepts and some typical algorithms. We also compare the algorithms based on quantum walks and classical random walks from the perspective of time complexity. Then we introduce their applications in the field of computer science. Finally we discuss the open issues from the perspectives of efficiency, main-memory volume, and computing time of existing algorithms. This study aims to contribute to this growing area of research by exploring random walks and quantum walks together. © 2017 IEEE.
- «
- ‹
- 1
- ›
- »