Two roles for ecological surrogacy : indicator surrogates and management surrogates
- Hunter, Malcolm, Westgate, Martin, Barton, Philip, Calhoun, Aram, Pierson, Jennifer
- Authors: Hunter, Malcolm , Westgate, Martin , Barton, Philip , Calhoun, Aram , Pierson, Jennifer
- Date: 2016
- Type: Text , Journal article
- Relation: Ecological Indicators Vol. 63, no. (2016), p. 121-125
- Full Text:
- Reviewed:
- Description: Ecological surrogacy - here defined as using a process or element (e.g., species, ecosystem, or abiotic factor) to represent another aspect of an ecological system - is a widely used concept, but many applications of the surrogate concept have been controversial. We argue that some of this controversy reflects differences among users with different goals, a distinction that can be crystalized by recognizing two basic types of surrogate. First, many ecologists and natural resource managers measure "indicator surrogates" to provide information about ecological systems. Second, and often overlooked, are "management surrogates" (e.g., umbrella species) that are primarily used to facilitate achieving management goals, especially broad goals such as "maintain biodiversity" or "increase ecosystem resilience." We propose that distinguishing these two overarching roles for surrogacy may facilitate better communication about project goals. This is critical when evaluating the usefulness of different surrogates, especially where a potential surrogate might be useful in one role but not another. Our classification for ecological surrogacy applies to species, ecosystems, ecological processes, abiotic factors, and genetics, and thus can provide coherence across a broad range of uses. © 2015 Elsevier Ltd. All rights reserved. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton" is provided in this record**
- Authors: Hunter, Malcolm , Westgate, Martin , Barton, Philip , Calhoun, Aram , Pierson, Jennifer
- Date: 2016
- Type: Text , Journal article
- Relation: Ecological Indicators Vol. 63, no. (2016), p. 121-125
- Full Text:
- Reviewed:
- Description: Ecological surrogacy - here defined as using a process or element (e.g., species, ecosystem, or abiotic factor) to represent another aspect of an ecological system - is a widely used concept, but many applications of the surrogate concept have been controversial. We argue that some of this controversy reflects differences among users with different goals, a distinction that can be crystalized by recognizing two basic types of surrogate. First, many ecologists and natural resource managers measure "indicator surrogates" to provide information about ecological systems. Second, and often overlooked, are "management surrogates" (e.g., umbrella species) that are primarily used to facilitate achieving management goals, especially broad goals such as "maintain biodiversity" or "increase ecosystem resilience." We propose that distinguishing these two overarching roles for surrogacy may facilitate better communication about project goals. This is critical when evaluating the usefulness of different surrogates, especially where a potential surrogate might be useful in one role but not another. Our classification for ecological surrogacy applies to species, ecosystems, ecological processes, abiotic factors, and genetics, and thus can provide coherence across a broad range of uses. © 2015 Elsevier Ltd. All rights reserved. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton" is provided in this record**
The use and utility of surrogates in biodiversity monitoring programmes
- Sato, Chloe, Westgate, Martin, Barton, Philip, Foster, Claire, O'Loughlin, Luke
- Authors: Sato, Chloe , Westgate, Martin , Barton, Philip , Foster, Claire , O'Loughlin, Luke
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Applied Ecology Vol. 56, no. 6 (2019), p. 1304-1310
- Full Text:
- Reviewed:
- Description: **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- Authors: Sato, Chloe , Westgate, Martin , Barton, Philip , Foster, Claire , O'Loughlin, Luke
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Applied Ecology Vol. 56, no. 6 (2019), p. 1304-1310
- Full Text:
- Reviewed:
- Description: **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
How practitioners integrate decision triggers with existing metrics in conservation monitoring
- Foster, Claire, O'Loughlin, Luke, Sato, Chloe, Westgate, Martin, Barton, Philip
- Authors: Foster, Claire , O'Loughlin, Luke , Sato, Chloe , Westgate, Martin , Barton, Philip
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Environmental Management Vol. 230, no. (2019), p. 94-101
- Full Text:
- Reviewed:
- Description: Decision triggers are defined thresholds in the status of monitored variables that indicate when to undertake management, and avoid undesirable ecosystem change. Decision triggers are frequently recommended to conservation practitioners as a tool to facilitate evidence-based management practices, but there has been limited attention paid to how practitioners are integrating decision triggers into existing monitoring programs. We sought to understand whether conservation practitioners’ use of decision triggers was influenced by the type of variables in their monitoring programs. We investigated this question using a practitioner-focused workshop involving a structured discussion and review of eight monitoring programs. Among our case studies, direct measures of biodiversity (e.g. native species) were more commonly monitored, but less likely to be linked to decision triggers (10% with triggers) than measures being used as surrogates (54% with triggers) for program objectives. This was because decision triggers were associated with management of threatening processes, which were often monitored as a surrogate for a biodiversity asset of interest. By contrast, direct measures of biodiversity were more commonly associated with informal decision processes that led to activities such as management reviews or external consultation. Workshop participants were in favor of including more formalized decision triggers in their programs, but were limited by incomplete ecological knowledge, lack of appropriately skilled staff, funding constraints, and/or uncertainty regarding intervention effectiveness. We recommend that practitioners consider including decision triggers for discussion activities (such as external consultation) in their programs as more than just early warning points for future interventions, particularly for direct measures. Decision triggers for discussions should be recognized as a critical feature of monitoring programs where information and operational limitations inhibit the use of decision triggers for interventions. © 2018 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- Authors: Foster, Claire , O'Loughlin, Luke , Sato, Chloe , Westgate, Martin , Barton, Philip
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Environmental Management Vol. 230, no. (2019), p. 94-101
- Full Text:
- Reviewed:
- Description: Decision triggers are defined thresholds in the status of monitored variables that indicate when to undertake management, and avoid undesirable ecosystem change. Decision triggers are frequently recommended to conservation practitioners as a tool to facilitate evidence-based management practices, but there has been limited attention paid to how practitioners are integrating decision triggers into existing monitoring programs. We sought to understand whether conservation practitioners’ use of decision triggers was influenced by the type of variables in their monitoring programs. We investigated this question using a practitioner-focused workshop involving a structured discussion and review of eight monitoring programs. Among our case studies, direct measures of biodiversity (e.g. native species) were more commonly monitored, but less likely to be linked to decision triggers (10% with triggers) than measures being used as surrogates (54% with triggers) for program objectives. This was because decision triggers were associated with management of threatening processes, which were often monitored as a surrogate for a biodiversity asset of interest. By contrast, direct measures of biodiversity were more commonly associated with informal decision processes that led to activities such as management reviews or external consultation. Workshop participants were in favor of including more formalized decision triggers in their programs, but were limited by incomplete ecological knowledge, lack of appropriately skilled staff, funding constraints, and/or uncertainty regarding intervention effectiveness. We recommend that practitioners consider including decision triggers for discussion activities (such as external consultation) in their programs as more than just early warning points for future interventions, particularly for direct measures. Decision triggers for discussions should be recognized as a critical feature of monitoring programs where information and operational limitations inhibit the use of decision triggers for interventions. © 2018 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
Tests of predictions associated with temporal changes in Australian bird populations
- Lindenmayer, David, Lane, Peter, Westgate, Martin, Scheele, Ben, Barton, Philip
- Authors: Lindenmayer, David , Lane, Peter , Westgate, Martin , Scheele, Ben , Barton, Philip
- Date: 2018
- Type: Text , Journal article
- Relation: Biological Conservation Vol. 222, no. (2018), p. 212-221
- Full Text:
- Reviewed:
- Description: Global biodiversity loss is the cumulative result of local species declines. To combat biodiversity loss, detailed information on the temporal trends of at-risk species at local scales is needed. Here we report the results of a 13-year study of temporal change in bird occupancy in one of the most heavily modified biomes worldwide; the temperate woodlands of south-eastern Australia. We sought to determine if temporal changes in bird species were different between three broad native vegetation types (old-growth woodland, regrowth woodland and restoration plantings) and between species traits (body size, migratory status, rarity, woodland dependency, or diet). We found evidence of decline for over a quarter of all bird species for which we had sufficient data for detailed analysis (30 out of 108 species). In contrast, only 14 species increased significantly. Temporal change of birds was linked to life-history attributes, with patterns often being habitat-dependent. Nectarivores and large-bodied birds declined across all vegetation types, whereas small-bodied species increased, particularly in restoration plantings. Contrasting with patterns documented elsewhere, resident but not migratory species declined, with this trend strongest in restoration plantings. Finally, our analyses showed that, as a group, common birds tended to decline whereas rare birds tended to increase, with effects for both most pronounced in restoration plantings. Our results highlight the benefit of targeted restoration planting for some species, but also demonstrate that many common species that have long-persisted in human-dominated landscapes are experiencing severe declines. © 2018 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- Authors: Lindenmayer, David , Lane, Peter , Westgate, Martin , Scheele, Ben , Barton, Philip
- Date: 2018
- Type: Text , Journal article
- Relation: Biological Conservation Vol. 222, no. (2018), p. 212-221
- Full Text:
- Reviewed:
- Description: Global biodiversity loss is the cumulative result of local species declines. To combat biodiversity loss, detailed information on the temporal trends of at-risk species at local scales is needed. Here we report the results of a 13-year study of temporal change in bird occupancy in one of the most heavily modified biomes worldwide; the temperate woodlands of south-eastern Australia. We sought to determine if temporal changes in bird species were different between three broad native vegetation types (old-growth woodland, regrowth woodland and restoration plantings) and between species traits (body size, migratory status, rarity, woodland dependency, or diet). We found evidence of decline for over a quarter of all bird species for which we had sufficient data for detailed analysis (30 out of 108 species). In contrast, only 14 species increased significantly. Temporal change of birds was linked to life-history attributes, with patterns often being habitat-dependent. Nectarivores and large-bodied birds declined across all vegetation types, whereas small-bodied species increased, particularly in restoration plantings. Contrasting with patterns documented elsewhere, resident but not migratory species declined, with this trend strongest in restoration plantings. Finally, our analyses showed that, as a group, common birds tended to decline whereas rare birds tended to increase, with effects for both most pronounced in restoration plantings. Our results highlight the benefit of targeted restoration planting for some species, but also demonstrate that many common species that have long-persisted in human-dominated landscapes are experiencing severe declines. © 2018 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
Quantifying shifts in topic popularity over 44 years of austral ecology
- Westgate, Martin, Barton, Philip, Lindenmayer, David, Andrew, Nigel
- Authors: Westgate, Martin , Barton, Philip , Lindenmayer, David , Andrew, Nigel
- Date: 2020
- Type: Text , Journal article
- Relation: Austral Ecology Vol. 45, no. 6 (2020), p. 663-671
- Full Text:
- Reviewed:
- Description: The Ecological Society of Australia was founded in 1959, and the society’s journal was first published in 1976. To examine how research published in the society’s journal has changed over this time, we used text mining to quantify themes and trends in the body of work published by the Australian Journal of Ecology and Austral Ecology from 1976 to 2019. We used topic models to identify 30 ‘topics’ within 2778 full-text articles in 246 issues of the journal, followed by mixed modelling to identify topics with above-average or below-average popularity in terms of the number of publications or citations that they contain. We found high inter-decadal turnover in research topics, with an early emphasis on highly specific ecosystems or processes giving way to a modern emphasis on community, spatial and fire ecology, invasive species and statistical modelling. Despite an early focus on Australian research, papers discussing South American ecosystems are now among the fastest-growing and most frequently cited topics in the journal. Topics that were growing fastest in publication rates were not always the same as those with high citation rates. Our results provide a systematic breakdown of the topics that Austral Ecology authors and editors have chosen to research, publish and cite through time, providing a valuable window into the historical and emerging foci of the journal. © 2020 Ecological Society of Australia
- Authors: Westgate, Martin , Barton, Philip , Lindenmayer, David , Andrew, Nigel
- Date: 2020
- Type: Text , Journal article
- Relation: Austral Ecology Vol. 45, no. 6 (2020), p. 663-671
- Full Text:
- Reviewed:
- Description: The Ecological Society of Australia was founded in 1959, and the society’s journal was first published in 1976. To examine how research published in the society’s journal has changed over this time, we used text mining to quantify themes and trends in the body of work published by the Australian Journal of Ecology and Austral Ecology from 1976 to 2019. We used topic models to identify 30 ‘topics’ within 2778 full-text articles in 246 issues of the journal, followed by mixed modelling to identify topics with above-average or below-average popularity in terms of the number of publications or citations that they contain. We found high inter-decadal turnover in research topics, with an early emphasis on highly specific ecosystems or processes giving way to a modern emphasis on community, spatial and fire ecology, invasive species and statistical modelling. Despite an early focus on Australian research, papers discussing South American ecosystems are now among the fastest-growing and most frequently cited topics in the journal. Topics that were growing fastest in publication rates were not always the same as those with high citation rates. Our results provide a systematic breakdown of the topics that Austral Ecology authors and editors have chosen to research, publish and cite through time, providing a valuable window into the historical and emerging foci of the journal. © 2020 Ecological Society of Australia
Novel bird responses to successive, large-scale, landscape transformations
- Lindenmayer, David, Blanchard, Wade, Westgate, Martin, Foster, Claire, Barton, Philip
- Authors: Lindenmayer, David , Blanchard, Wade , Westgate, Martin , Foster, Claire , Barton, Philip
- Date: 2019
- Type: Text , Journal article
- Relation: Ecological Monographs Vol. 89, no. 3 (2019), p.
- Full Text:
- Reviewed:
- Description: Transformation of intact vegetation into new kinds and configurations of human-modified habitats is a well-established driver of biodiversity loss. Following initial conversion, many human-dominated landscapes are then subject to further large-scale changes in land use. The impacts on biodiversity of repeated changes in land use remain poorly known, particularly how changes in the matrix interact with initial patterns of vegetation clearing. We used an 18-yr study of birds in remnant patches of endangered temperate woodland in south-eastern Australia to quantify the spatial and temporal effects of successive land use transformation in the surrounding landscape. We examined bird response to (1) initial patterns of landscape modification (creating semi-cleared grazing land dominated by pastures that surrounded remnant woodland patches), (2) subsequent establishment and maturation of exotic tree plantations on the pastures surrounding woodland patches, and (3) additive and interactive effects of both types of landscape transformation. The majority of the 57 bird species modeled responded to conversion of grazing land to exotic plantations, either independently from initial patterns of landscape transformation (20 species), or interactively (18 species) or additively (15 species) with initial landscape transformation. The occurrence of only one species (the Common Bronzewing) was related to patterns of initial transformation but not subsequent transformation due to plantation establishment. Thus, despite many characteristics of the woodland patches within the plantation remaining largely unaltered throughout our 18-yr investigation, the matrix had a profound effect on the kinds of species inhabiting them, with such impacts often magnified over time as the matrix continued to change. Plantation establishment triggered new regional-level spatial processes with effects on birds detected in woodland patches up to 2 km away from the plantation. Matrix conversion selected for species with different traits (size, diet and movement patterns) compared to the initial transformation, suggesting it is acting as a different filter on the bird community. New kinds of landscape transformation (such as plantation establishment on previously cleared land) can radically affect the species that have persisted for many decades in previously modified landscapes. This highlights the challenges, but also opportunities, for conserving taxa in ever changing human-dominated environments. © 2019 by the Ecological Society of America. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- Authors: Lindenmayer, David , Blanchard, Wade , Westgate, Martin , Foster, Claire , Barton, Philip
- Date: 2019
- Type: Text , Journal article
- Relation: Ecological Monographs Vol. 89, no. 3 (2019), p.
- Full Text:
- Reviewed:
- Description: Transformation of intact vegetation into new kinds and configurations of human-modified habitats is a well-established driver of biodiversity loss. Following initial conversion, many human-dominated landscapes are then subject to further large-scale changes in land use. The impacts on biodiversity of repeated changes in land use remain poorly known, particularly how changes in the matrix interact with initial patterns of vegetation clearing. We used an 18-yr study of birds in remnant patches of endangered temperate woodland in south-eastern Australia to quantify the spatial and temporal effects of successive land use transformation in the surrounding landscape. We examined bird response to (1) initial patterns of landscape modification (creating semi-cleared grazing land dominated by pastures that surrounded remnant woodland patches), (2) subsequent establishment and maturation of exotic tree plantations on the pastures surrounding woodland patches, and (3) additive and interactive effects of both types of landscape transformation. The majority of the 57 bird species modeled responded to conversion of grazing land to exotic plantations, either independently from initial patterns of landscape transformation (20 species), or interactively (18 species) or additively (15 species) with initial landscape transformation. The occurrence of only one species (the Common Bronzewing) was related to patterns of initial transformation but not subsequent transformation due to plantation establishment. Thus, despite many characteristics of the woodland patches within the plantation remaining largely unaltered throughout our 18-yr investigation, the matrix had a profound effect on the kinds of species inhabiting them, with such impacts often magnified over time as the matrix continued to change. Plantation establishment triggered new regional-level spatial processes with effects on birds detected in woodland patches up to 2 km away from the plantation. Matrix conversion selected for species with different traits (size, diet and movement patterns) compared to the initial transformation, suggesting it is acting as a different filter on the bird community. New kinds of landscape transformation (such as plantation establishment on previously cleared land) can radically affect the species that have persisted for many decades in previously modified landscapes. This highlights the challenges, but also opportunities, for conserving taxa in ever changing human-dominated environments. © 2019 by the Ecological Society of America. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
Ecological processes associated with different animal taxa in urban environments
- Evans, Maldwyn, Barton, Philip, Westgate, Martin, Soga, Masashi, Fujita, Go, Miyashita, Tadashi
- Authors: Evans, Maldwyn , Barton, Philip , Westgate, Martin , Soga, Masashi , Fujita, Go , Miyashita, Tadashi
- Date: 2021
- Type: Text , Journal article
- Relation: Ecosphere Vol. 12, no. 8 (2021), p.
- Full Text:
- Reviewed:
- Description: Urbanization is increasing globally with wide-ranging consequences for biodiversity and the ecological processes it performs. Yet knowledge of the range of ecological processes supported by biodiversity in urban environments, and the different taxa that perform these processes is poorly understood. We used a text-analysis approach to identify the research trends and gaps in knowledge in the literature on ecological processes provided by animals in urban environments. We found a divide in urban ecological processes research that grouped studies into those with an explicit link to ecological processes and those that focused on biodiversity and made an implicit link to ecological processes. We also found that the dominant taxa in urban ecological processes research were insects, which has more than twice as many studies as birds or mammals, potentially due to their recognized and explicit link to key processes and services (e.g., pollination, pollution biomonitoring) and disservices (e.g., pests, disease transmission). We found a further split between terrestrial and aquatic studies, with urban aquatic studies also declining in relative prevalence over the last 20 yr. To consolidate and advance research on ecological processes in urban environments, we suggest it will be important to bridge the divide between studies on explicit services and others on more general biodiversity. This might be achieved by placing greater focus on the processes provided by non-insect taxa, and by integrating aquatic and terrestrial perspectives. © 2021 The Authors.
- Authors: Evans, Maldwyn , Barton, Philip , Westgate, Martin , Soga, Masashi , Fujita, Go , Miyashita, Tadashi
- Date: 2021
- Type: Text , Journal article
- Relation: Ecosphere Vol. 12, no. 8 (2021), p.
- Full Text:
- Reviewed:
- Description: Urbanization is increasing globally with wide-ranging consequences for biodiversity and the ecological processes it performs. Yet knowledge of the range of ecological processes supported by biodiversity in urban environments, and the different taxa that perform these processes is poorly understood. We used a text-analysis approach to identify the research trends and gaps in knowledge in the literature on ecological processes provided by animals in urban environments. We found a divide in urban ecological processes research that grouped studies into those with an explicit link to ecological processes and those that focused on biodiversity and made an implicit link to ecological processes. We also found that the dominant taxa in urban ecological processes research were insects, which has more than twice as many studies as birds or mammals, potentially due to their recognized and explicit link to key processes and services (e.g., pollination, pollution biomonitoring) and disservices (e.g., pests, disease transmission). We found a further split between terrestrial and aquatic studies, with urban aquatic studies also declining in relative prevalence over the last 20 yr. To consolidate and advance research on ecological processes in urban environments, we suggest it will be important to bridge the divide between studies on explicit services and others on more general biodiversity. This might be achieved by placing greater focus on the processes provided by non-insect taxa, and by integrating aquatic and terrestrial perspectives. © 2021 The Authors.
Optimal taxonomic groups for biodiversity assessment: a meta-analytic approach
- Westgate, Martin, Tulloch, Ayesha, Barton, Philip, Pierson, Jennifer, Lindenmayer, David
- Authors: Westgate, Martin , Tulloch, Ayesha , Barton, Philip , Pierson, Jennifer , Lindenmayer, David
- Date: 2017
- Type: Text , Journal article
- Relation: Ecography Vol. 40, no. 4 (2017), p. 539-548
- Full Text:
- Reviewed:
- Description: A fundamental decision in biodiversity assessment is the selection of one or more study taxa, a choice that is often made using qualitative criteria such as historical precedent, ease of detection, or available technical or taxonomic expertise. A more robust approach would involve selecting taxa based on the a priori expectation that they will provide the best possible information on unmeasured groups, but data to inform such hypotheses are often lacking. Using a global meta-analysis, we quantified the proportion of variability that each of 12 taxonomic groups (at the Order level or above) explained in the richness or composition of other taxa. We then applied optimization to matrices of pairwise congruency to identify the best set of complementary surrogate groups. We found that no single taxon was an optimal surrogate for both the richness and composition of unmeasured taxa if we used simple methods to aggregate congruence data between studies. In contrast, statistical methods that accounted for well-known drivers of cross-taxon congruence (spatial extent, grain size, and latitude) lead to the prioritization of similar surrogates for both species richness and composition. Advanced statistical methods were also more effective at describing known ecological relationships between taxa than simple methods, and show that congruence is typically highest between taxonomically and functionally dissimilar taxa. Birds and vascular plants were most frequently selected by our algorithm as surrogates for other taxonomic groups, but the extent to which any one taxon was the ‘optimal’ choice of surrogate for other biodiversity was highly context-dependent. In the absence of other information – such as in data-poor areas of the globe, and under limited budgets for monitoring or assessment – ecologists can use our results to assess which taxa are most likely to reflect the distribution of the richness or composition of ‘total’ biodiversity. © 2016 The Authors
- Authors: Westgate, Martin , Tulloch, Ayesha , Barton, Philip , Pierson, Jennifer , Lindenmayer, David
- Date: 2017
- Type: Text , Journal article
- Relation: Ecography Vol. 40, no. 4 (2017), p. 539-548
- Full Text:
- Reviewed:
- Description: A fundamental decision in biodiversity assessment is the selection of one or more study taxa, a choice that is often made using qualitative criteria such as historical precedent, ease of detection, or available technical or taxonomic expertise. A more robust approach would involve selecting taxa based on the a priori expectation that they will provide the best possible information on unmeasured groups, but data to inform such hypotheses are often lacking. Using a global meta-analysis, we quantified the proportion of variability that each of 12 taxonomic groups (at the Order level or above) explained in the richness or composition of other taxa. We then applied optimization to matrices of pairwise congruency to identify the best set of complementary surrogate groups. We found that no single taxon was an optimal surrogate for both the richness and composition of unmeasured taxa if we used simple methods to aggregate congruence data between studies. In contrast, statistical methods that accounted for well-known drivers of cross-taxon congruence (spatial extent, grain size, and latitude) lead to the prioritization of similar surrogates for both species richness and composition. Advanced statistical methods were also more effective at describing known ecological relationships between taxa than simple methods, and show that congruence is typically highest between taxonomically and functionally dissimilar taxa. Birds and vascular plants were most frequently selected by our algorithm as surrogates for other taxonomic groups, but the extent to which any one taxon was the ‘optimal’ choice of surrogate for other biodiversity was highly context-dependent. In the absence of other information – such as in data-poor areas of the globe, and under limited budgets for monitoring or assessment – ecologists can use our results to assess which taxa are most likely to reflect the distribution of the richness or composition of ‘total’ biodiversity. © 2016 The Authors
- «
- ‹
- 1
- ›
- »