An efficient selective miner consensus protocol in blockchain oriented iot smart monitoring
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2019
- Type: Text , Conference proceedings , Conference paper
- Relation: 2019 IEEE International Conference on Industrial Technology, ICIT 2019; Melbourne; Australia; 13th-15th February 2019 Vol. 2019-February, p. 1135-1142
- Full Text:
- Reviewed:
- Description: Blockchains have been widely used in Internet of Things(IoT) applications including smart cities, smart home and smart governance to provide high levels of security and privacy. In this article, we advance a Blockchain based decentralized architecture for the storage of IoT data produced from smart home/cities. The architecture includes a secure communication protocol using a sign-encryption technique between power constrained IoT devices and a Gateway. The sign encryption also preserves privacy. We propose that a Software Agent executing on the Gateway selects a Miner node using performance parameters of Miners. Simulations demonstrate that the recommended Miner selection outperforms Proof of Works selection used in Bitcoin and Random Miner Selection.
- Description: Proceedings of the IEEE International Conference on Industrial Technology
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2019
- Type: Text , Conference proceedings , Conference paper
- Relation: 2019 IEEE International Conference on Industrial Technology, ICIT 2019; Melbourne; Australia; 13th-15th February 2019 Vol. 2019-February, p. 1135-1142
- Full Text:
- Reviewed:
- Description: Blockchains have been widely used in Internet of Things(IoT) applications including smart cities, smart home and smart governance to provide high levels of security and privacy. In this article, we advance a Blockchain based decentralized architecture for the storage of IoT data produced from smart home/cities. The architecture includes a secure communication protocol using a sign-encryption technique between power constrained IoT devices and a Gateway. The sign encryption also preserves privacy. We propose that a Software Agent executing on the Gateway selects a Miner node using performance parameters of Miners. Simulations demonstrate that the recommended Miner selection outperforms Proof of Works selection used in Bitcoin and Random Miner Selection.
- Description: Proceedings of the IEEE International Conference on Industrial Technology
Continuous patient monitoring with a patient centric agent : A block architecture
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2018
- Type: Text , Journal article
- Relation: IEEE Access Vol. 6, no. (2018), p. 32700-32726
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including continuous remote patient monitoring (RPM). However, the complexity of RPM architectures, the size of data sets generated and limited power capacity of devices make RPM challenging. In this paper, we propose a tier-based End to End architecture for continuous patient monitoring that has a patient centric agent (PCA) as its center piece. The PCA manages a blockchain component to preserve privacy when data streaming from body area sensors needs to be stored securely. The PCA based architecture includes a lightweight communication protocol to enforce security of data through different segments of a continuous, real time patient monitoring architecture. The architecture includes the insertion of data into a personal blockchain to facilitate data sharing amongst healthcare professionals and integration into electronic health records while ensuring privacy is maintained. The blockchain is customized for RPM with modifications that include having the PCA select a Miner to reduce computational effort, enabling the PCA to manage multiple blockchains for the same patient, and the modification of each block with a prefix tree to minimize energy consumption and incorporate secure transaction payments. Simulation results demonstrate that security and privacy can be enhanced in RPM with the PCA based End to End architecture.
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2018
- Type: Text , Journal article
- Relation: IEEE Access Vol. 6, no. (2018), p. 32700-32726
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including continuous remote patient monitoring (RPM). However, the complexity of RPM architectures, the size of data sets generated and limited power capacity of devices make RPM challenging. In this paper, we propose a tier-based End to End architecture for continuous patient monitoring that has a patient centric agent (PCA) as its center piece. The PCA manages a blockchain component to preserve privacy when data streaming from body area sensors needs to be stored securely. The PCA based architecture includes a lightweight communication protocol to enforce security of data through different segments of a continuous, real time patient monitoring architecture. The architecture includes the insertion of data into a personal blockchain to facilitate data sharing amongst healthcare professionals and integration into electronic health records while ensuring privacy is maintained. The blockchain is customized for RPM with modifications that include having the PCA select a Miner to reduce computational effort, enabling the PCA to manage multiple blockchains for the same patient, and the modification of each block with a prefix tree to minimize energy consumption and incorporate secure transaction payments. Simulation results demonstrate that security and privacy can be enhanced in RPM with the PCA based End to End architecture.
Blockchain leveraged task migration in body area sensor networks
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2019
- Type: Text , Conference proceedings , Conference paper
- Relation: 25th Asia-Pacific Conference on Communications, APCC 2019 p. 177-184
- Full Text:
- Reviewed:
- Description: Blockchain technologies emerging for healthcare support secure health data sharing with greater interoperability among different heterogeneous systems. However, the collection and storage of data generated from Body Area Sensor Net-works(BASN) for migration to high processing power computing services requires an efficient BASN architecture. We present a decentralized BASN architecture that involves devices at three levels; 1) Body Area Sensor Network-medical sensors typically on or in patient's body transmitting data to a Smartphone, 2) Fog/Edge, and 3) Cloud. We propose that a Patient Agent(PA) replicated on the Smartphone, Fog and Cloud servers processes medical data and execute a task offloading algorithm by leveraging a Blockchain. Performance analysis is conducted to demonstrate the feasibility of the proposed Blockchain leveraged, distributed Patient Agent controlled BASN. © 2019 IEEE.
- Description: E1
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2019
- Type: Text , Conference proceedings , Conference paper
- Relation: 25th Asia-Pacific Conference on Communications, APCC 2019 p. 177-184
- Full Text:
- Reviewed:
- Description: Blockchain technologies emerging for healthcare support secure health data sharing with greater interoperability among different heterogeneous systems. However, the collection and storage of data generated from Body Area Sensor Net-works(BASN) for migration to high processing power computing services requires an efficient BASN architecture. We present a decentralized BASN architecture that involves devices at three levels; 1) Body Area Sensor Network-medical sensors typically on or in patient's body transmitting data to a Smartphone, 2) Fog/Edge, and 3) Cloud. We propose that a Patient Agent(PA) replicated on the Smartphone, Fog and Cloud servers processes medical data and execute a task offloading algorithm by leveraging a Blockchain. Performance analysis is conducted to demonstrate the feasibility of the proposed Blockchain leveraged, distributed Patient Agent controlled BASN. © 2019 IEEE.
- Description: E1
An efficient hybrid system for anomaly detection in social networks
- Rahman, Md Shafiur, Halder, Sajal, Uddin, Ashraf, Acharjee, Uzzal
- Authors: Rahman, Md Shafiur , Halder, Sajal , Uddin, Ashraf , Acharjee, Uzzal
- Date: 2021
- Type: Text , Journal article
- Relation: Cybersecurity Vol. 4, no. 1 (2021), p.
- Full Text:
- Reviewed:
- Description: Anomaly detection has been an essential and dynamic research area in the data mining. A wide range of applications including different social medias have adopted different state-of-the-art methods to identify anomaly for ensuring user’s security and privacy. The social network refers to a forum used by different groups of people to express their thoughts, communicate with each other, and share the content needed. This social networks also facilitate abnormal activities, spread fake news, rumours, misinformation, unsolicited messages, and propaganda post malicious links. Therefore, detection of abnormalities is one of the important data analysis activities for the identification of normal or abnormal users on the social networks. In this paper, we have developed a hybrid anomaly detection method named DT-SVMNB that cascades several machine learning algorithms including decision tree (C5.0), Support Vector Machine (SVM) and Naïve Bayesian classifier (NBC) for classifying normal and abnormal users in social networks. We have extracted a list of unique features derived from users’ profile and contents. Using two kinds of dataset with the selected features, the proposed machine learning model called DT-SVMNB is trained. Our model classifies users as depressed one or suicidal one in the social network. We have conducted an experiment of our model using synthetic and real datasets from social network. The performance analysis demonstrates around 98% accuracy which proves the effectiveness and efficiency of our proposed system. © 2021, The Author(s).
- Authors: Rahman, Md Shafiur , Halder, Sajal , Uddin, Ashraf , Acharjee, Uzzal
- Date: 2021
- Type: Text , Journal article
- Relation: Cybersecurity Vol. 4, no. 1 (2021), p.
- Full Text:
- Reviewed:
- Description: Anomaly detection has been an essential and dynamic research area in the data mining. A wide range of applications including different social medias have adopted different state-of-the-art methods to identify anomaly for ensuring user’s security and privacy. The social network refers to a forum used by different groups of people to express their thoughts, communicate with each other, and share the content needed. This social networks also facilitate abnormal activities, spread fake news, rumours, misinformation, unsolicited messages, and propaganda post malicious links. Therefore, detection of abnormalities is one of the important data analysis activities for the identification of normal or abnormal users on the social networks. In this paper, we have developed a hybrid anomaly detection method named DT-SVMNB that cascades several machine learning algorithms including decision tree (C5.0), Support Vector Machine (SVM) and Naïve Bayesian classifier (NBC) for classifying normal and abnormal users in social networks. We have extracted a list of unique features derived from users’ profile and contents. Using two kinds of dataset with the selected features, the proposed machine learning model called DT-SVMNB is trained. Our model classifies users as depressed one or suicidal one in the social network. We have conducted an experiment of our model using synthetic and real datasets from social network. The performance analysis demonstrates around 98% accuracy which proves the effectiveness and efficiency of our proposed system. © 2021, The Author(s).
Blockchain leveraged decentralized IoT eHealth framework
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: Internet of Things Vol. 9, no. March 2020 p. 100159
- Full Text:
- Reviewed:
- Description: Blockchain technologies recently emerging for eHealth, can facilitate a secure, decentral- ized and patient-driven, record management system. However, Blockchain technologies cannot accommodate the storage of data generated from IoT devices in remote patient management (RPM) settings as this application requires a fast consensus mechanism, care- ful management of keys and enhanced protocols for privacy. In this paper, we propose a Blockchain leveraged decentralized eHealth architecture which comprises three layers: (1) The Sensing layer –Body Area Sensor Networks include medical sensors typically on or in a patient body transmitting data to a smartphone. (2) The NEAR processing layer –Edge Networks consist of devices at one hop from data sensing IoT devices. (3) The FAR pro- cessing layer –Core Networks comprise Cloud or other high computing servers). A Patient Agent (PA) software replicated on the three layers processes medical data to ensure reli- able, secure and private communication. The PA executes a lightweight Blockchain consen- sus mechanism and utilizes a Blockchain leveraged task-offloading algorithm to ensure pa- tient’s privacy while outsourcing tasks. Performance analysis of the decentralized eHealth architecture has been conducted to demonstrate the feasibility of the system in the pro- cessing and storage of RPM data.
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: Internet of Things Vol. 9, no. March 2020 p. 100159
- Full Text:
- Reviewed:
- Description: Blockchain technologies recently emerging for eHealth, can facilitate a secure, decentral- ized and patient-driven, record management system. However, Blockchain technologies cannot accommodate the storage of data generated from IoT devices in remote patient management (RPM) settings as this application requires a fast consensus mechanism, care- ful management of keys and enhanced protocols for privacy. In this paper, we propose a Blockchain leveraged decentralized eHealth architecture which comprises three layers: (1) The Sensing layer –Body Area Sensor Networks include medical sensors typically on or in a patient body transmitting data to a smartphone. (2) The NEAR processing layer –Edge Networks consist of devices at one hop from data sensing IoT devices. (3) The FAR pro- cessing layer –Core Networks comprise Cloud or other high computing servers). A Patient Agent (PA) software replicated on the three layers processes medical data to ensure reli- able, secure and private communication. The PA executes a lightweight Blockchain consen- sus mechanism and utilizes a Blockchain leveraged task-offloading algorithm to ensure pa- tient’s privacy while outsourcing tasks. Performance analysis of the decentralized eHealth architecture has been conducted to demonstrate the feasibility of the system in the pro- cessing and storage of RPM data.
Rapid health data repository allocation using predictive machine learning
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: Health Informatics Journal Vol. 26, no. 4 (2020), p. 3009-3036
- Full Text:
- Reviewed:
- Description: Health-related data is stored in a number of repositories that are managed and controlled by different entities. For instance, Electronic Health Records are usually administered by governments. Electronic Medical Records are typically controlled by health care providers, whereas Personal Health Records are managed directly by patients. Recently, Blockchain-based health record systems largely regulated by technology have emerged as another type of repository. Repositories for storing health data differ from one another based on cost, level of security and quality of performance. Not only has the type of repositories increased in recent years, but the quantum of health data to be stored has increased. For instance, the advent of wearable sensors that capture physiological signs has resulted in an exponential growth in digital health data. The increase in the types of repository and amount of data has driven a need for intelligent processes to select appropriate repositories as data is collected. However, the storage allocation decision is complex and nuanced. The challenges are exacerbated when health data are continuously streamed, as is the case with wearable sensors. Although patients are not always solely responsible for determining which repository should be used, they typically have some input into this decision. Patients can be expected to have idiosyncratic preferences regarding storage decisions depending on their unique contexts. In this paper, we propose a predictive model for the storage of health data that can meet patient needs and make storage decisions rapidly, in real-time, even with data streaming from wearable sensors. The model is built with a machine learning classifier that learns the mapping between characteristics of health data and features of storage repositories from a training set generated synthetically from correlations evident from small samples of experts. Results from the evaluation demonstrate the viability of the machine learning technique used. © The Author(s) 2020.
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: Health Informatics Journal Vol. 26, no. 4 (2020), p. 3009-3036
- Full Text:
- Reviewed:
- Description: Health-related data is stored in a number of repositories that are managed and controlled by different entities. For instance, Electronic Health Records are usually administered by governments. Electronic Medical Records are typically controlled by health care providers, whereas Personal Health Records are managed directly by patients. Recently, Blockchain-based health record systems largely regulated by technology have emerged as another type of repository. Repositories for storing health data differ from one another based on cost, level of security and quality of performance. Not only has the type of repositories increased in recent years, but the quantum of health data to be stored has increased. For instance, the advent of wearable sensors that capture physiological signs has resulted in an exponential growth in digital health data. The increase in the types of repository and amount of data has driven a need for intelligent processes to select appropriate repositories as data is collected. However, the storage allocation decision is complex and nuanced. The challenges are exacerbated when health data are continuously streamed, as is the case with wearable sensors. Although patients are not always solely responsible for determining which repository should be used, they typically have some input into this decision. Patients can be expected to have idiosyncratic preferences regarding storage decisions depending on their unique contexts. In this paper, we propose a predictive model for the storage of health data that can meet patient needs and make storage decisions rapidly, in real-time, even with data streaming from wearable sensors. The model is built with a machine learning classifier that learns the mapping between characteristics of health data and features of storage repositories from a training set generated synthetically from correlations evident from small samples of experts. Results from the evaluation demonstrate the viability of the machine learning technique used. © The Author(s) 2020.
Efficient route selection in ad hoc on-demand distance vector routing
- Uddin, Ashraf, Akther, Arnisha, Parvez, Shamima, Stranieri, Andrew
- Authors: Uddin, Ashraf , Akther, Arnisha , Parvez, Shamima , Stranieri, Andrew
- Date: 2017
- Type: Text , Conference paper
- Relation: 20th International Conference of Computer and Information, IICIT 2017; Dhaka, Bangladesh; 22nd-24th December 2017 p. 1-6
- Full Text:
- Reviewed:
- Description: The protocol diversities of mobile ad hoc have already got hold of the field to a peak of a matured and developed area. Still, the restraint of delay and bandwidth of mobile ad hoc network have kept a little room to draft a routing protocol for the pursuit of providing quality of service. In the paper, we proposed protocol namely Efficient Route Selection in Ad Hoc On-Demand Distance Vector Routing. We select the best path among multiple paths from source to destination using covariance and delay. We consider the delay, link stability and energy to devise a covariance-based metric to discover the most balanced path. We also propose a metric for the selection of a node that acts as a local backup node for the most vulnerable nodes on the selected path. We accomplish our implementation in NS3and it shows the more reliable path and less end to end delay than other counterpart protocols.
- Authors: Uddin, Ashraf , Akther, Arnisha , Parvez, Shamima , Stranieri, Andrew
- Date: 2017
- Type: Text , Conference paper
- Relation: 20th International Conference of Computer and Information, IICIT 2017; Dhaka, Bangladesh; 22nd-24th December 2017 p. 1-6
- Full Text:
- Reviewed:
- Description: The protocol diversities of mobile ad hoc have already got hold of the field to a peak of a matured and developed area. Still, the restraint of delay and bandwidth of mobile ad hoc network have kept a little room to draft a routing protocol for the pursuit of providing quality of service. In the paper, we proposed protocol namely Efficient Route Selection in Ad Hoc On-Demand Distance Vector Routing. We select the best path among multiple paths from source to destination using covariance and delay. We consider the delay, link stability and energy to devise a covariance-based metric to discover the most balanced path. We also propose a metric for the selection of a node that acts as a local backup node for the most vulnerable nodes on the selected path. We accomplish our implementation in NS3and it shows the more reliable path and less end to end delay than other counterpart protocols.
- «
- ‹
- 1
- ›
- »