Attribute weighted Naive Bayes classifier using a local optimization

- Taheri, Sona, Yearwood, John, Mammadov, Musa, Seifollahi, Sattar

**Authors:**Taheri, Sona , Yearwood, John , Mammadov, Musa , Seifollahi, Sattar**Date:**2013**Type:**Text , Journal article**Relation:**Neural Computing & Applications Vol.24, no.5 (2013), p.995-1002**Full Text:****Reviewed:****Description:**The Naive Bayes classifier is a popular classification technique for data mining and machine learning. It has been shown to be very effective on a variety of data classification problems. However, the strong assumption that all attributes are conditionally independent given the class is often violated in real-world applications. Numerous methods have been proposed in order to improve the performance of the Naive Bayes classifier by alleviating the attribute independence assumption. However, violation of the independence assumption can increase the expected error. Another alternative is assigning the weights for attributes. In this paper, we propose a novel attribute weighted Naive Bayes classifier by considering weights to the conditional probabilities. An objective function is modeled and taken into account, which is based on the structure of the Naive Bayes classifier and the attribute weights. The optimal weights are determined by a local optimization method using the quasisecant method. In the proposed approach, the Naive Bayes classifier is taken as a starting point. We report the results of numerical experiments on several real-world data sets in binary classification, which show the efficiency of the proposed method.

**Authors:**Taheri, Sona , Yearwood, John , Mammadov, Musa , Seifollahi, Sattar**Date:**2013**Type:**Text , Journal article**Relation:**Neural Computing & Applications Vol.24, no.5 (2013), p.995-1002**Full Text:****Reviewed:****Description:**The Naive Bayes classifier is a popular classification technique for data mining and machine learning. It has been shown to be very effective on a variety of data classification problems. However, the strong assumption that all attributes are conditionally independent given the class is often violated in real-world applications. Numerous methods have been proposed in order to improve the performance of the Naive Bayes classifier by alleviating the attribute independence assumption. However, violation of the independence assumption can increase the expected error. Another alternative is assigning the weights for attributes. In this paper, we propose a novel attribute weighted Naive Bayes classifier by considering weights to the conditional probabilities. An objective function is modeled and taken into account, which is based on the structure of the Naive Bayes classifier and the attribute weights. The optimal weights are determined by a local optimization method using the quasisecant method. In the proposed approach, the Naive Bayes classifier is taken as a starting point. We report the results of numerical experiments on several real-world data sets in binary classification, which show the efficiency of the proposed method.

Improving Naive Bayes classifier using conditional probabilities

- Taheri, Sona, Mammadov, Musa, Bagirov, Adil

**Authors:**Taheri, Sona , Mammadov, Musa , Bagirov, Adil**Date:**2010**Type:**Text , Conference proceedings**Full Text:****Description:**Naive Bayes classifier is the simplest among Bayesian Network classifiers. It has shown to be very efficient on a variety of data classification problems. However, the strong assumption that all features are conditionally independent given the class is often violated on many real world applications. Therefore, improvement of the Naive Bayes classifier by alleviating the feature independence assumption has attracted much attention. In this paper, we develop a new version of the Naive Bayes classifier without assuming independence of features. The proposed algorithm approximates the interactions between features by using conditional probabilities. We present results of numerical experiments on several real world data sets, where continuous features are discretized by applying two different methods. These results demonstrate that the proposed algorithm significantly improve the performance of the Naive Bayes classifier, yet at the same time maintains its robustness. © 2011, Australian Computer Society, Inc.**Description:**2003009505

**Authors:**Taheri, Sona , Mammadov, Musa , Bagirov, Adil**Date:**2010**Type:**Text , Conference proceedings**Full Text:****Description:**Naive Bayes classifier is the simplest among Bayesian Network classifiers. It has shown to be very efficient on a variety of data classification problems. However, the strong assumption that all features are conditionally independent given the class is often violated on many real world applications. Therefore, improvement of the Naive Bayes classifier by alleviating the feature independence assumption has attracted much attention. In this paper, we develop a new version of the Naive Bayes classifier without assuming independence of features. The proposed algorithm approximates the interactions between features by using conditional probabilities. We present results of numerical experiments on several real world data sets, where continuous features are discretized by applying two different methods. These results demonstrate that the proposed algorithm significantly improve the performance of the Naive Bayes classifier, yet at the same time maintains its robustness. © 2011, Australian Computer Society, Inc.**Description:**2003009505

Structure learning of Bayesian networks using a new unrestricted dependency algorithm

- Taheri, Sona, Mammadov, Musa

**Authors:**Taheri, Sona , Mammadov, Musa**Date:**2012**Type:**Text , Conference proceedings**Full Text:****Description:**Bayesian Networks have deserved extensive attentions in data mining due to their efficiencies, and reasonable predictive accuracy. A Bayesian Network is a directed acyclic graph in which each node represents a variable and each arc a probabilistic dependency between two variables. Constructing a Bayesian Network from data is the learning process that is divided in two steps: learning structure and learning parameter. In many domains, the structure is not known a priori and must be inferred from data. This paper presents an iterative unrestricted dependency algorithm for learning structure of Bayesian Networks for binary classification problems. Numerical experiments are conducted on several real world data sets, where continuous features are discretized by applying two different methods. The performance of the proposed algorithm is compared with the Naive Bayes, the Tree Augmented Naive Bayes, and the k

**Authors:**Taheri, Sona , Mammadov, Musa**Date:**2012**Type:**Text , Conference proceedings**Full Text:****Description:**Bayesian Networks have deserved extensive attentions in data mining due to their efficiencies, and reasonable predictive accuracy. A Bayesian Network is a directed acyclic graph in which each node represents a variable and each arc a probabilistic dependency between two variables. Constructing a Bayesian Network from data is the learning process that is divided in two steps: learning structure and learning parameter. In many domains, the structure is not known a priori and must be inferred from data. This paper presents an iterative unrestricted dependency algorithm for learning structure of Bayesian Networks for binary classification problems. Numerical experiments are conducted on several real world data sets, where continuous features are discretized by applying two different methods. The performance of the proposed algorithm is compared with the Naive Bayes, the Tree Augmented Naive Bayes, and the k

Learning the naive bayes classifier with optimization models

- Taheri, Sona, Mammadov, Musa

**Authors:**Taheri, Sona , Mammadov, Musa**Date:**2013**Type:**Text , Journal article**Relation:**International Journal of Applied Mathematics and Computer Science Vol. 23, no. 4 (2013), p. 787-795**Full Text:****Reviewed:****Description:**Naive Bayes is among the simplest probabilistic classifiers. It often performs surprisingly well in many real world applications, despite the strong assumption that all features are conditionally independent given the class. In the learning process of this classifier with the known structure, class probabilities and conditional probabilities are calculated using training data, and then values of these probabilities are used to classify new observations. In this paper, we introduce three novel optimization models for the naive Bayes classifier where both class probabilities and conditional probabilities are considered as variables. The values of these variables are found by solving the corresponding optimization problems. Numerical experiments are conducted on several real world binary classification data sets, where continuous features are discretized by applying three different methods. The performances of these models are compared with the naive Bayes classifier, tree augmented naive Bayes, the SVM, C4.5 and the nearest neighbor classifier. The obtained results demonstrate that the proposed models can significantly improve the performance of the naive Bayes classifier, yet at the same time maintain its simple structure.

**Authors:**Taheri, Sona , Mammadov, Musa**Date:**2013**Type:**Text , Journal article**Relation:**International Journal of Applied Mathematics and Computer Science Vol. 23, no. 4 (2013), p. 787-795**Full Text:****Reviewed:****Description:**Naive Bayes is among the simplest probabilistic classifiers. It often performs surprisingly well in many real world applications, despite the strong assumption that all features are conditionally independent given the class. In the learning process of this classifier with the known structure, class probabilities and conditional probabilities are calculated using training data, and then values of these probabilities are used to classify new observations. In this paper, we introduce three novel optimization models for the naive Bayes classifier where both class probabilities and conditional probabilities are considered as variables. The values of these variables are found by solving the corresponding optimization problems. Numerical experiments are conducted on several real world binary classification data sets, where continuous features are discretized by applying three different methods. The performances of these models are compared with the naive Bayes classifier, tree augmented naive Bayes, the SVM, C4.5 and the nearest neighbor classifier. The obtained results demonstrate that the proposed models can significantly improve the performance of the naive Bayes classifier, yet at the same time maintain its simple structure.

Globally convergent algorithms for solving unconstrained optimization problems

- Taheri, Sona, Mammadov, Musa, Seifollahi, Sattar

**Authors:**Taheri, Sona , Mammadov, Musa , Seifollahi, Sattar**Date:**2013**Type:**Text , Journal article**Relation:**Optimization Vol. , no. (2013), p. 1-15**Full Text:****Reviewed:****Description:**New algorithms for solving unconstrained optimization problems are presented based on the idea of combining two types of descent directions: the direction of anti-gradient and either the Newton or quasi-Newton directions. The use of latter directions allows one to improve the convergence rate. Global and superlinear convergence properties of these algorithms are established. Numerical experiments using some unconstrained test problems are reported. Also, the proposed algorithms are compared with some existing similar methods using results of experiments. This comparison demonstrates the efficiency of the proposed combined methods.

**Authors:**Taheri, Sona , Mammadov, Musa , Seifollahi, Sattar**Date:**2013**Type:**Text , Journal article**Relation:**Optimization Vol. , no. (2013), p. 1-15**Full Text:****Reviewed:****Description:**New algorithms for solving unconstrained optimization problems are presented based on the idea of combining two types of descent directions: the direction of anti-gradient and either the Newton or quasi-Newton directions. The use of latter directions allows one to improve the convergence rate. Global and superlinear convergence properties of these algorithms are established. Numerical experiments using some unconstrained test problems are reported. Also, the proposed algorithms are compared with some existing similar methods using results of experiments. This comparison demonstrates the efficiency of the proposed combined methods.

Multi-source cyber-attacks detection using machine learning

- Taheri, Sona, Gondal, Iqbal, Bagirov, Adil, Harkness, Greg, Brown, Simon, Chi, Chihung

**Authors:**Taheri, Sona , Gondal, Iqbal , Bagirov, Adil , Harkness, Greg , Brown, Simon , Chi, Chihung**Date:**2019**Type:**Text , Conference proceedings , Conference paper**Relation:**2019 IEEE International Conference on Industrial Technology, ICIT 2019; Melbourne, Australia; 13th-15th February 2019 Vol. 2019-February, p. 1167-1172**Full Text:****Reviewed:****Description:**The Internet of Things (IoT) has significantly increased the number of devices connected to the Internet ranging from sensors to multi-source data information. As the IoT continues to evolve with new technologies number of threats and attacks against IoT devices are on the increase. Analyzing and detecting these attacks originating from different sources needs machine learning models. These models provide proactive solutions for detecting attacks and their sources. In this paper, we propose to apply a supervised machine learning classification technique to identify cyber-attacks from each source. More precisely, we apply the incremental piecewise linear classifier that constructs boundary between sources/classes incrementally starting with one hyperplane and adding more hyperplanes at each iteration. The algorithm terminates when no further significant improvement of the separation of sources/classes is possible. The construction and usage of piecewise linear boundaries allows us to avoid any possible overfitting. We apply the incremental piecewise linear classifier on the multi-source real world cyber security data set to identify cyber-attacks and their sources.**Description:**Proceedings of the IEEE International Conference on Industrial Technology

**Authors:**Taheri, Sona , Gondal, Iqbal , Bagirov, Adil , Harkness, Greg , Brown, Simon , Chi, Chihung**Date:**2019**Type:**Text , Conference proceedings , Conference paper**Relation:**2019 IEEE International Conference on Industrial Technology, ICIT 2019; Melbourne, Australia; 13th-15th February 2019 Vol. 2019-February, p. 1167-1172**Full Text:****Reviewed:****Description:**The Internet of Things (IoT) has significantly increased the number of devices connected to the Internet ranging from sensors to multi-source data information. As the IoT continues to evolve with new technologies number of threats and attacks against IoT devices are on the increase. Analyzing and detecting these attacks originating from different sources needs machine learning models. These models provide proactive solutions for detecting attacks and their sources. In this paper, we propose to apply a supervised machine learning classification technique to identify cyber-attacks from each source. More precisely, we apply the incremental piecewise linear classifier that constructs boundary between sources/classes incrementally starting with one hyperplane and adding more hyperplanes at each iteration. The algorithm terminates when no further significant improvement of the separation of sources/classes is possible. The construction and usage of piecewise linear boundaries allows us to avoid any possible overfitting. We apply the incremental piecewise linear classifier on the multi-source real world cyber security data set to identify cyber-attacks and their sources.**Description:**Proceedings of the IEEE International Conference on Industrial Technology

Structure learning of Bayesian Networks using global optimization with applications in data classification

- Taheri, Sona, Mammadov, Musa

**Authors:**Taheri, Sona , Mammadov, Musa**Date:**2014**Type:**Text , Journal article**Relation:**Optimization Letters Vol. 9, no. 5 (2014), p. 931-948**Full Text:****Reviewed:****Description:**Bayesian Networks are increasingly popular methods of modeling uncertainty in artificial intelligence and machine learning. A Bayesian Network consists of a directed acyclic graph in which each node represents a variable and each arc represents probabilistic dependency between two variables. Constructing a Bayesian Network from data is a learning process that consists of two steps: learning structure and learning parameter. Learning a network structure from data is the most difficult task in this process. This paper presents a new algorithm for constructing an optimal structure for Bayesian Networks based on optimization. The algorithm has two major parts. First, we define an optimization model to find the better network graphs. Then, we apply an optimization approach for removing possible cycles from the directed graphs obtained in the first part which is the first of its kind in the literature. The main advantage of the proposed method is that the maximal number of parents for variables is not fixed a priory and it is defined during the optimization procedure. It also considers all networks including cyclic ones and then choose a best structure by applying a global optimization method. To show the efficiency of the algorithm, several closely related algorithms including unrestricted dependency Bayesian Network algorithm, as well as, benchmarks algorithms SVM and C4.5 are employed for comparison. We apply these algorithms on data classification; data sets are taken from the UCI machine learning repository and the LIBSVM. © 2014, Springer-Verlag Berlin Heidelberg.

**Authors:**Taheri, Sona , Mammadov, Musa**Date:**2014**Type:**Text , Journal article**Relation:**Optimization Letters Vol. 9, no. 5 (2014), p. 931-948**Full Text:****Reviewed:****Description:**Bayesian Networks are increasingly popular methods of modeling uncertainty in artificial intelligence and machine learning. A Bayesian Network consists of a directed acyclic graph in which each node represents a variable and each arc represents probabilistic dependency between two variables. Constructing a Bayesian Network from data is a learning process that consists of two steps: learning structure and learning parameter. Learning a network structure from data is the most difficult task in this process. This paper presents a new algorithm for constructing an optimal structure for Bayesian Networks based on optimization. The algorithm has two major parts. First, we define an optimization model to find the better network graphs. Then, we apply an optimization approach for removing possible cycles from the directed graphs obtained in the first part which is the first of its kind in the literature. The main advantage of the proposed method is that the maximal number of parents for variables is not fixed a priory and it is defined during the optimization procedure. It also considers all networks including cyclic ones and then choose a best structure by applying a global optimization method. To show the efficiency of the algorithm, several closely related algorithms including unrestricted dependency Bayesian Network algorithm, as well as, benchmarks algorithms SVM and C4.5 are employed for comparison. We apply these algorithms on data classification; data sets are taken from the UCI machine learning repository and the LIBSVM. © 2014, Springer-Verlag Berlin Heidelberg.

Double bundle method for finding clarke stationary points in nonsmooth dc programming

- Joki, Kaisa, Bagirov, Adil, Karmitsa, Napsu, Makela, Marko, Taheri, Sona

**Authors:**Joki, Kaisa , Bagirov, Adil , Karmitsa, Napsu , Makela, Marko , Taheri, Sona**Date:**2018**Type:**Text , Journal article**Relation:**SIAM Journal on Optimization Vol. 28, no. 2 (2018), p. 1892-1919**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:****Reviewed:****Description:**The aim of this paper is to introduce a new proximal double bundle method for unconstrained nonsmooth optimization, where the objective function is presented as a difference of two convex (DC) functions. The novelty in our method is a new escape procedure which enables us to guarantee approximate Clarke stationarity for solutions by utilizing the DC components of the objective function. This optimality condition is stronger than the criticality condition typically used in DC programming. Moreover, if a candidate solution is not approximate Clarke stationary, then the escape procedure returns a descent direction. With this escape procedure, we can avoid some shortcomings encountered when criticality is used. The finite termination of the double bundle method to an approximate Clarke stationary point is proved by assuming that the subdifferentials of DC components are polytopes. Finally, some encouraging numerical results are presented.

**Authors:**Joki, Kaisa , Bagirov, Adil , Karmitsa, Napsu , Makela, Marko , Taheri, Sona**Date:**2018**Type:**Text , Journal article**Relation:**SIAM Journal on Optimization Vol. 28, no. 2 (2018), p. 1892-1919**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:****Reviewed:****Description:**The aim of this paper is to introduce a new proximal double bundle method for unconstrained nonsmooth optimization, where the objective function is presented as a difference of two convex (DC) functions. The novelty in our method is a new escape procedure which enables us to guarantee approximate Clarke stationarity for solutions by utilizing the DC components of the objective function. This optimality condition is stronger than the criticality condition typically used in DC programming. Moreover, if a candidate solution is not approximate Clarke stationary, then the escape procedure returns a descent direction. With this escape procedure, we can avoid some shortcomings encountered when criticality is used. The finite termination of the double bundle method to an approximate Clarke stationary point is proved by assuming that the subdifferentials of DC components are polytopes. Finally, some encouraging numerical results are presented.

Cyberattack triage using incremental clustering for intrusion detection systems

- Taheri, Sona, Bagirov, Adil, Gondal, Iqbal, Brown, Simon

**Authors:**Taheri, Sona , Bagirov, Adil , Gondal, Iqbal , Brown, Simon**Date:**2020**Type:**Text , Journal article**Relation:**International Journal of Information Security Vol. 19, no. 5 (2020), p. 597-607**Relation:**http://purl.org/au-research/grants/arc/DP190100580**Full Text:****Reviewed:****Description:**Intrusion detection systems (IDSs) are devices or software applications that monitor networks or systems for malicious activities and signals alerts/alarms when such activity is discovered. However, an IDS may generate many false alerts which affect its accuracy. In this paper, we develop a cyberattack triage algorithm to detect these alerts (so-called outliers). The proposed algorithm is designed using the clustering, optimization and distance-based approaches. An optimization-based incremental clustering algorithm is proposed to find clusters of different types of cyberattacks. Using a special procedure, a set of clusters is divided into two subsets: normal and stable clusters. Then, outliers are found among stable clusters using an average distance between centroids of normal clusters. The proposed algorithm is evaluated using the well-known IDS data sets—Knowledge Discovery and Data mining Cup 1999 and UNSW-NB15—and compared with some other existing algorithms. Results show that the proposed algorithm has a high detection accuracy and its false negative rate is very low. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.**Description:**This research was conducted in Internet Commerce Security Laboratory (ICSL) funded by Westpac Banking Corporation Australia. In addition, the research by Dr. Sona Taheri and A/Prof. Adil Bagirov was supported by the Australian Government through the Australian Research Council’s Discovery Projects funding scheme (DP190100580).

**Authors:**Taheri, Sona , Bagirov, Adil , Gondal, Iqbal , Brown, Simon**Date:**2020**Type:**Text , Journal article**Relation:**International Journal of Information Security Vol. 19, no. 5 (2020), p. 597-607**Relation:**http://purl.org/au-research/grants/arc/DP190100580**Full Text:****Reviewed:****Description:**Intrusion detection systems (IDSs) are devices or software applications that monitor networks or systems for malicious activities and signals alerts/alarms when such activity is discovered. However, an IDS may generate many false alerts which affect its accuracy. In this paper, we develop a cyberattack triage algorithm to detect these alerts (so-called outliers). The proposed algorithm is designed using the clustering, optimization and distance-based approaches. An optimization-based incremental clustering algorithm is proposed to find clusters of different types of cyberattacks. Using a special procedure, a set of clusters is divided into two subsets: normal and stable clusters. Then, outliers are found among stable clusters using an average distance between centroids of normal clusters. The proposed algorithm is evaluated using the well-known IDS data sets—Knowledge Discovery and Data mining Cup 1999 and UNSW-NB15—and compared with some other existing algorithms. Results show that the proposed algorithm has a high detection accuracy and its false negative rate is very low. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.**Description:**This research was conducted in Internet Commerce Security Laboratory (ICSL) funded by Westpac Banking Corporation Australia. In addition, the research by Dr. Sona Taheri and A/Prof. Adil Bagirov was supported by the Australian Government through the Australian Research Council’s Discovery Projects funding scheme (DP190100580).

Aggregate subgradient method for nonsmooth DC optimization

- Bagirov, Adil, Taheri, Sona, Joki, Kaisa, Karmitsa, Napsu, Mäkelä, Marko

**Authors:**Bagirov, Adil , Taheri, Sona , Joki, Kaisa , Karmitsa, Napsu , Mäkelä, Marko**Date:**2021**Type:**Text , Journal article**Relation:**Optimization Letters Vol. 15, no. 1 (2021), p. 83-96**Relation:**http://purl.org/au-research/grants/arc/DP190100580**Full Text:****Reviewed:****Description:**The aggregate subgradient method is developed for solving unconstrained nonsmooth difference of convex (DC) optimization problems. The proposed method shares some similarities with both the subgradient and the bundle methods. Aggregate subgradients are defined as a convex combination of subgradients computed at null steps between two serious steps. At each iteration search directions are found using only two subgradients: the aggregate subgradient and a subgradient computed at the current null step. It is proved that the proposed method converges to a critical point of the DC optimization problem and also that the number of null steps between two serious steps is finite. The new method is tested using some academic test problems and compared with several other nonsmooth DC optimization solvers. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.

**Authors:**Bagirov, Adil , Taheri, Sona , Joki, Kaisa , Karmitsa, Napsu , Mäkelä, Marko**Date:**2021**Type:**Text , Journal article**Relation:**Optimization Letters Vol. 15, no. 1 (2021), p. 83-96**Relation:**http://purl.org/au-research/grants/arc/DP190100580**Full Text:****Reviewed:****Description:**The aggregate subgradient method is developed for solving unconstrained nonsmooth difference of convex (DC) optimization problems. The proposed method shares some similarities with both the subgradient and the bundle methods. Aggregate subgradients are defined as a convex combination of subgradients computed at null steps between two serious steps. At each iteration search directions are found using only two subgradients: the aggregate subgradient and a subgradient computed at the current null step. It is proved that the proposed method converges to a critical point of the DC optimization problem and also that the number of null steps between two serious steps is finite. The new method is tested using some academic test problems and compared with several other nonsmooth DC optimization solvers. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.

Learning Bayesian networks based on optimization approaches

**Authors:**Taheri, Sona**Date:**2012**Type:**Text , Thesis , PhD**Full Text:****Description:**Learning accurate classifiers from preclassified data is a very active research topic in machine learning and artifcial intelligence. There are numerous classifier paradigms, among which Bayesian Networks are very effective and well known in domains with uncertainty. Bayesian Networks are widely used representation frameworks for reasoning with probabilistic information. These models use graphs to capture dependence and independence relationships between feature variables, allowing a concise representation of the knowledge as well as efficient graph based query processing algorithms. This representation is defined by two components: structure learning and parameter learning. The structure of this model represents a directed acyclic graph. The nodes in the graph correspond to the feature variables in the domain, and the arcs (edges) show the causal relationships between feature variables. A directed edge relates the variables so that the variable corresponding to the terminal node (child) will be conditioned on the variable corresponding to the initial node (parent). The parameter learning represents probabilities and conditional probabilities based on prior information or past experience. The set of probabilities are represented in the conditional probability table. Once the network structure is constructed, the probabilistic inferences are readily calculated, and can be performed to predict the outcome of some variables based on the observations of others. However, the problem of structure learning is a complex problem since the number of candidate structures grows exponentially when the number of feature variables increases. This thesis is devoted to the development of learning structures and parameters in Bayesian Networks. Different models based on optimization techniques are introduced to construct an optimal structure of a Bayesian Network. These models also consider the improvement of the Naive Bayes' structure by developing new algorithms to alleviate the independence assumptions. We present various models to learn parameters of Bayesian Networks; in particular we propose optimization models for the Naive Bayes and the Tree Augmented Naive Bayes by considering different objective functions. To solve corresponding optimization problems in Bayesian Networks, we develop new optimization algorithms. Local optimization methods are introduced based on the combination of the gradient and Newton methods. It is proved that the proposed methods are globally convergent and have superlinear convergence rates. As a global search we use the global optimization method, AGOP, implemented in the open software library GANSO. We apply the proposed local methods in the combination with AGOP. Therefore, the main contributions of this thesis include (a) new algorithms for learning an optimal structure of a Bayesian Network; (b) new models for learning the parameters of Bayesian Networks with the given structures; and finally (c) new optimization algorithms for optimizing the proposed models in (a) and (b). To validate the proposed methods, we conduct experiments across a number of real world problems. Print version is available at: http://library.federation.edu.au/record=b1804607~S4**Description:**Doctor of Philosophy

Clusterwise support vector linear regression

- Joki, Kaisa, Bagirov, Adil, Karmitsa, Napsu, Mäkelä, Marko, Taheri, Sona

**Authors:**Joki, Kaisa , Bagirov, Adil , Karmitsa, Napsu , Mäkelä, Marko , Taheri, Sona**Date:**2020**Type:**Text , Journal article**Relation:**European Journal of Operational Research Vol. 287, no. 1 (2020), p. 19-35**Full Text:****Reviewed:****Description:**In clusterwise linear regression (CLR), the aim is to simultaneously partition data into a given number of clusters and to find regression coefficients for each cluster. In this paper, we propose a novel approach to model and solve the CLR problem. The main idea is to utilize the support vector machine (SVM) approach to model the CLR problem by using the SVM for regression to approximate each cluster. This new formulation of the CLR problem is represented as an unconstrained nonsmooth optimization problem, where we minimize a difference of two convex (DC) functions. To solve this problem, a method based on the combination of the incremental algorithm and the double bundle method for DC optimization is designed. Numerical experiments are performed to validate the reliability of the new formulation for CLR and the efficiency of the proposed method. The results show that the SVM approach is suitable for solving CLR problems, especially, when there are outliers in data. © 2020 Elsevier B.V.**Description:**Funding details: Academy of Finland, 289500, 294002, 319274 Funding details: Turun Yliopisto Funding details: Australian Research Council, ARC, (Project no. DP190100580 ).

**Authors:**Joki, Kaisa , Bagirov, Adil , Karmitsa, Napsu , Mäkelä, Marko , Taheri, Sona**Date:**2020**Type:**Text , Journal article**Relation:**European Journal of Operational Research Vol. 287, no. 1 (2020), p. 19-35**Full Text:****Reviewed:****Description:**In clusterwise linear regression (CLR), the aim is to simultaneously partition data into a given number of clusters and to find regression coefficients for each cluster. In this paper, we propose a novel approach to model and solve the CLR problem. The main idea is to utilize the support vector machine (SVM) approach to model the CLR problem by using the SVM for regression to approximate each cluster. This new formulation of the CLR problem is represented as an unconstrained nonsmooth optimization problem, where we minimize a difference of two convex (DC) functions. To solve this problem, a method based on the combination of the incremental algorithm and the double bundle method for DC optimization is designed. Numerical experiments are performed to validate the reliability of the new formulation for CLR and the efficiency of the proposed method. The results show that the SVM approach is suitable for solving CLR problems, especially, when there are outliers in data. © 2020 Elsevier B.V.**Description:**Funding details: Academy of Finland, 289500, 294002, 319274 Funding details: Turun Yliopisto Funding details: Australian Research Council, ARC, (Project no. DP190100580 ).

- «
- ‹
- 1
- ›
- »