Continuous patient monitoring with a patient centric agent : A block architecture
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2018
- Type: Text , Journal article
- Relation: IEEE Access Vol. 6, no. (2018), p. 32700-32726
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including continuous remote patient monitoring (RPM). However, the complexity of RPM architectures, the size of data sets generated and limited power capacity of devices make RPM challenging. In this paper, we propose a tier-based End to End architecture for continuous patient monitoring that has a patient centric agent (PCA) as its center piece. The PCA manages a blockchain component to preserve privacy when data streaming from body area sensors needs to be stored securely. The PCA based architecture includes a lightweight communication protocol to enforce security of data through different segments of a continuous, real time patient monitoring architecture. The architecture includes the insertion of data into a personal blockchain to facilitate data sharing amongst healthcare professionals and integration into electronic health records while ensuring privacy is maintained. The blockchain is customized for RPM with modifications that include having the PCA select a Miner to reduce computational effort, enabling the PCA to manage multiple blockchains for the same patient, and the modification of each block with a prefix tree to minimize energy consumption and incorporate secure transaction payments. Simulation results demonstrate that security and privacy can be enhanced in RPM with the PCA based End to End architecture.
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2018
- Type: Text , Journal article
- Relation: IEEE Access Vol. 6, no. (2018), p. 32700-32726
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including continuous remote patient monitoring (RPM). However, the complexity of RPM architectures, the size of data sets generated and limited power capacity of devices make RPM challenging. In this paper, we propose a tier-based End to End architecture for continuous patient monitoring that has a patient centric agent (PCA) as its center piece. The PCA manages a blockchain component to preserve privacy when data streaming from body area sensors needs to be stored securely. The PCA based architecture includes a lightweight communication protocol to enforce security of data through different segments of a continuous, real time patient monitoring architecture. The architecture includes the insertion of data into a personal blockchain to facilitate data sharing amongst healthcare professionals and integration into electronic health records while ensuring privacy is maintained. The blockchain is customized for RPM with modifications that include having the PCA select a Miner to reduce computational effort, enabling the PCA to manage multiple blockchains for the same patient, and the modification of each block with a prefix tree to minimize energy consumption and incorporate secure transaction payments. Simulation results demonstrate that security and privacy can be enhanced in RPM with the PCA based End to End architecture.
An approach for Ewing test selection to support the clinical assessment of cardiac autonomic neuropathy
- Stranieri, Andrew, Abawajy, Jemal, Kelarev, Andrei, Huda, Shamsul, Chowdhury, Morshed, Jelinek, Herbert
- Authors: Stranieri, Andrew , Abawajy, Jemal , Kelarev, Andrei , Huda, Shamsul , Chowdhury, Morshed , Jelinek, Herbert
- Date: 2013
- Type: Text , Journal article
- Relation: Artificial Intelligence in Medicine Vol. 58, no. 3 (2013), p. 185-193
- Full Text:
- Reviewed:
- Description: Objective: This article addresses the problem of determining optimal sequences of tests for the clinical assessment of cardiac autonomic neuropathy (CAN) We investigate the accuracy of using only one of the recommended Ewing tests to classify CAN and the additional accuracy obtained by adding the remaining tests of the Ewing battery This is important as not all five Ewing tests can always be applied in each situation in practice Methods and material: We used new and unique database of the diabetes screening research initiative project, which is more than ten times larger than the data set used by Ewing in his original investigation of CAN We utilized decision trees and the optimal decision path finder (ODPF) procedure for identifying optimal sequences of tests Results: We present experimental results on the accuracy of using each one of the recommended Ewing tests to classify CAN and the additional accuracy that can be achieved by adding the remaining tests of the Ewing battery We found the best sequences of tests for cost-function equal to the number of tests The accuracies achieved by the initial segments of the optimal sequences for 2, 3 and 4 categories of CAN are 80.80, 91.33, 93.97 and 94.14, and respectively, 79.86, 89.29, 91.16 and 91.76, and 78.90, 86.21, 88.15 and 88.93 They show significant improvement compared to the sequence considered previously in the literature and the mathematical expectations of the accuracies of a random sequence of tests The complete outcomes obtained for all subsets of the Ewing features are required for determining optimal sequences of tests for any cost-function with the use of the ODPF procedure We have also found two most significant additional features that can increase the accuracy when some of the Ewing attributes cannot be obtained Conclusions: The outcomes obtained can be used to determine the optimal sequences of tests for each individual cost-function by following the ODPF procedure The results show that the best single Ewing test for diagnosing CAN is the deep breathing heart rate variation test Optimal sequences found for the cost-function equal to the number of tests guarantee that the best accuracy is achieved after any number of tests and provide an improvement in comparison with the previous ordering of tests or a random sequence © 2013 Elsevier B.V.
- Description: 2003011130
- Authors: Stranieri, Andrew , Abawajy, Jemal , Kelarev, Andrei , Huda, Shamsul , Chowdhury, Morshed , Jelinek, Herbert
- Date: 2013
- Type: Text , Journal article
- Relation: Artificial Intelligence in Medicine Vol. 58, no. 3 (2013), p. 185-193
- Full Text:
- Reviewed:
- Description: Objective: This article addresses the problem of determining optimal sequences of tests for the clinical assessment of cardiac autonomic neuropathy (CAN) We investigate the accuracy of using only one of the recommended Ewing tests to classify CAN and the additional accuracy obtained by adding the remaining tests of the Ewing battery This is important as not all five Ewing tests can always be applied in each situation in practice Methods and material: We used new and unique database of the diabetes screening research initiative project, which is more than ten times larger than the data set used by Ewing in his original investigation of CAN We utilized decision trees and the optimal decision path finder (ODPF) procedure for identifying optimal sequences of tests Results: We present experimental results on the accuracy of using each one of the recommended Ewing tests to classify CAN and the additional accuracy that can be achieved by adding the remaining tests of the Ewing battery We found the best sequences of tests for cost-function equal to the number of tests The accuracies achieved by the initial segments of the optimal sequences for 2, 3 and 4 categories of CAN are 80.80, 91.33, 93.97 and 94.14, and respectively, 79.86, 89.29, 91.16 and 91.76, and 78.90, 86.21, 88.15 and 88.93 They show significant improvement compared to the sequence considered previously in the literature and the mathematical expectations of the accuracies of a random sequence of tests The complete outcomes obtained for all subsets of the Ewing features are required for determining optimal sequences of tests for any cost-function with the use of the ODPF procedure We have also found two most significant additional features that can increase the accuracy when some of the Ewing attributes cannot be obtained Conclusions: The outcomes obtained can be used to determine the optimal sequences of tests for each individual cost-function by following the ODPF procedure The results show that the best single Ewing test for diagnosing CAN is the deep breathing heart rate variation test Optimal sequences found for the cost-function equal to the number of tests guarantee that the best accuracy is achieved after any number of tests and provide an improvement in comparison with the previous ordering of tests or a random sequence © 2013 Elsevier B.V.
- Description: 2003011130
Data analytics identify glycated haemoglobin co-markers for type 2 diabetes mellitus diagnosis
- Jelinek, Herbert, Stranieri, Andrew, Yatsko, Andrew, Venkatraman, Sitalakshmi
- Authors: Jelinek, Herbert , Stranieri, Andrew , Yatsko, Andrew , Venkatraman, Sitalakshmi
- Date: 2016
- Type: Text , Journal article
- Relation: Computers in Biology and Medicine Vol. 75, no. (2016), p. 90-97
- Full Text: false
- Reviewed:
- Description: Glycated haemoglobin (HbA1c) is being more commonly used as an alternative test for the identification of type 2 diabetes mellitus (T2DM) or to add to fasting blood glucose level and oral glucose tolerance test results, because it is easily obtained using point-of-care technology and represents long-term blood sugar levels. HbA1c cut-off values of 6.5% or above have been recommended for clinical use based on the presence of diabetic comorbidities from population studies. However, outcomes of large trials with a HbA1c of 6.5% as a cut-off have been inconsistent for a diagnosis of T2DM. This suggests that a HbA1c cut-off of 6.5% as a single marker may not be sensitive enough or be too simple and miss individuals at risk or with already overt, undiagnosed diabetes. In this study, data mining algorithms have been applied on a large clinical dataset to identify an optimal cut-off value for HbA1c and to identify whether additional biomarkers can be used together with HbA1c to enhance diagnostic accuracy of T2DM. T2DM classification accuracy increased if 8-hydroxy-2-deoxyguanosine (8-OhdG), an oxidative stress marker, was included in the algorithm from 78.71% for HbA1c at 6.5% to 86.64%. A similar result was obtained when interleukin-6 (IL-6) was included (accuracy=85.63%) but with a lower optimal HbA1c range between 5.73 and 6.22%. The application of data analytics to medical records from the Diabetes Screening programme demonstrates that data analytics, combined with large clinical datasets can be used to identify clinically appropriate cut-off values and identify novel biomarkers that when included improve the accuracy of T2DM diagnosis even when HbA1c levels are below or equal to the current cut-off of 6.5%. © 2016 Elsevier Ltd.
- «
- ‹
- 1
- ›
- »