Response of soil dehydrogenase activity to salinity and cadmium species
- Filipović, Lana, Romić, Marija, Sikora, Sanja, Huić Babić, Katarina, Filipović, Vilim, Gerke, Horst, Romić, Davor
- Authors: Filipović, Lana , Romić, Marija , Sikora, Sanja , Huić Babić, Katarina , Filipović, Vilim , Gerke, Horst , Romić, Davor
- Date: 2020
- Type: Text , Journal article
- Relation: Journal of soil science and plant nutrition Vol. 20, no. 2 (2020), p. 530-536
- Full Text: false
- Reviewed:
- Description: Greater understanding of the microbial activity role in metal mobilization processes in soil is of major importance. The objective was to study the effect of major Cd species in solution of a saline soil on dehydrogenase activity (DHA). Hypothesis is that (i) under increased soil salinity, more mobile Cd species with diverse effect on DHA may be generated (i.e., CdCl n 2-n ) and that (ii) DHA may correlate to organically complexed Cd species. In a greenhouse pot experiment, NaCl salinity (50 and 100 mM) was applied to control soil and soil spiked with Cd (5 and 10 mg kg -1 ). Soil total and available (CaCl 2 extractable) Cd concentrations were measured, and DHA determined using 2,3,5-triphenyltetrazolium chloride (TTC) method. Speciation was calculated from results of soil solution ion analysis using geochemical equilibrium model Visual MINTEQ. DHA was reduced with increased soil salinity and Cd contamination, but only compared with control soil. Although weak, negative correlation between DHA and CdCl n 2-n complexes in soil solution suggested their higher inhibitory effect on DHA than other Cd species. Positive correlation between DHA and organically complexed Cd indicated that raised microbial activity may increase the proportion of organically complexed Cd in the soil solution. Cd toxicity to soil microorganisms can be accentuated in a saline environment, which may be an issue of great importance for agricultural production in coastal areas. Microbial activity may via releasing organic substances in soil solution significantly change cadmium complexation and mobility in soil, an aspect which has often been overlooked. Graphical Abstract
Modeling water flow and phosphorus sorption in a soil amended with sewage sludge and olive pomace as compost or biochar
- Filipović, Vilim, Černe, Marko, Šimůnek, Jiří, Filipović, Lana, Romić, Marija, Ondrašek, Gabrijel, Bogunović, Igor, Mustać, Ivan, Krevh, Vedran, Ferenčević, Anja, Robinson, David, Palčić, Igor, Pasković, Igor, Goreta Ban, Smiljana, Užila, Zoran, Ban, Dean
- Authors: Filipović, Vilim , Černe, Marko , Šimůnek, Jiří , Filipović, Lana , Romić, Marija , Ondrašek, Gabrijel , Bogunović, Igor , Mustać, Ivan , Krevh, Vedran , Ferenčević, Anja , Robinson, David , Palčić, Igor , Pasković, Igor , Goreta Ban, Smiljana , Užila, Zoran , Ban, Dean
- Date: 2020
- Type: Text , Journal article
- Relation: Agronomy (Basel) Vol. 10, no. 8 (2020), p. 1163
- Full Text:
- Reviewed:
- Description: Organic amendments are often reported to improve soil properties, promote plant growth, and improve crop yield. This study aimed to investigate the effects of the biochar and compost produced from sewage sludge and olive pomace on soil hydraulic properties, water flow, and P transport (i.e., sorption) using numerical modeling (HYDRUS-1D) applied to two soil types (Terra Rosa and Rendzina). Evaporation and leaching experiments on soil cores and repacked soil columns were performed to determine the soil water retention, hydraulic conductivity, P leaching potential, and P sorption capacity of these mixtures. In the majority of treatments, the soil water retention showed a small increase compared to the control soil. A reliable fit with the modified van Genuchten model was found, which was also confirmed by water flow modeling of leaching experiments (R2 0.99). The results showed a high P sorption in all the treatments (Kd 21.24 to 53.68 cm3 g−1), and a high model reliability when the inverse modeling procedure was used (R2 0.93–0.99). Overall, adding sewage sludge or olive pomace as compost or biochar improved the Terra Rosa and Rendzina water retention and did not increase the P mobility in these soils, proving to be a sustainable source of carbon and P-rich materials.
- Authors: Filipović, Vilim , Černe, Marko , Šimůnek, Jiří , Filipović, Lana , Romić, Marija , Ondrašek, Gabrijel , Bogunović, Igor , Mustać, Ivan , Krevh, Vedran , Ferenčević, Anja , Robinson, David , Palčić, Igor , Pasković, Igor , Goreta Ban, Smiljana , Užila, Zoran , Ban, Dean
- Date: 2020
- Type: Text , Journal article
- Relation: Agronomy (Basel) Vol. 10, no. 8 (2020), p. 1163
- Full Text:
- Reviewed:
- Description: Organic amendments are often reported to improve soil properties, promote plant growth, and improve crop yield. This study aimed to investigate the effects of the biochar and compost produced from sewage sludge and olive pomace on soil hydraulic properties, water flow, and P transport (i.e., sorption) using numerical modeling (HYDRUS-1D) applied to two soil types (Terra Rosa and Rendzina). Evaporation and leaching experiments on soil cores and repacked soil columns were performed to determine the soil water retention, hydraulic conductivity, P leaching potential, and P sorption capacity of these mixtures. In the majority of treatments, the soil water retention showed a small increase compared to the control soil. A reliable fit with the modified van Genuchten model was found, which was also confirmed by water flow modeling of leaching experiments (R2 0.99). The results showed a high P sorption in all the treatments (Kd 21.24 to 53.68 cm3 g−1), and a high model reliability when the inverse modeling procedure was used (R2 0.93–0.99). Overall, adding sewage sludge or olive pomace as compost or biochar improved the Terra Rosa and Rendzina water retention and did not increase the P mobility in these soils, proving to be a sustainable source of carbon and P-rich materials.
The effect of stabilization on the utilization of municipal sewage sludge as a soil amendment
- Černe, Marko, Palčić, Igor, Pasković, Igor, Major, Nikola, Romić, Marija, Filipović, Vilim, Igrc, Marina Diana, Perčin, Aleksandra, Goreta Ban, Smiljana, Zorko, Benjamin, Vodenik, Branko, Glavič Cindro, Denis, Milačič, Radmila, Heath, David, Ban, Dean
- Authors: Černe, Marko , Palčić, Igor , Pasković, Igor , Major, Nikola , Romić, Marija , Filipović, Vilim , Igrc, Marina Diana , Perčin, Aleksandra , Goreta Ban, Smiljana , Zorko, Benjamin , Vodenik, Branko , Glavič Cindro, Denis , Milačič, Radmila , Heath, David , Ban, Dean
- Date: 2019
- Type: Text , Journal article
- Relation: Waste Management Vol. 94, no. (2019), p. 27-38
- Full Text: false
- Reviewed:
- Description: Stabilization procedures affect nutrient and inorganic contaminant concentrations.•Anaerobic sludge has the highest levels of metals and radionuclides.•High P and N contents in sludge are a measure of its potential as a fertilizer.•Adsorption of metals and radionuclides to sludge biomass increases with nutrient content.•Soil amendment with sewage sludge is a promising strategy for nutrient recovery. This study assesses the potential use of different types of stabilized sewage sludge as a soil amendment by considering their physicochemical characteristics, nutritional status, and their trace metal and radionuclide content. The concentrations of trace metals and radionuclides were determined using ICP-OES and gamma-ray spectrometry, respectively. For determining nutritional status and chemical characterization, this study followed standard ISO-recommended procedures. Data analysis revealed that anaerobic sludge contains higher concentrations of Cr, Hg, and Ni compared to aerobic and non-biologically stabilized sludge. A similar observation was observed in the case of 226Ra, 210Pb, 228Ra, and 228Th. Furthermore, the high levels of P and N in aerobic sludge suggest that biologically stabilized sludge has the potential to be a good fertilizer. In addition, the study finds strong evidence that nutrients are involved in the adsorption of metals and radionuclides onto sludge biomass. Overall, eight of the nine studied sludge samples are safe for agricultural use since the concentrations of trace metals fall well below the limits set by Croatian legislation (NN 38/08). In addition, the levels of radionuclides do not pose a radiological risk. This means that soil conditioning with sewage sludge remains a viable strategy for nutrient recovery from municipal waste, although long-term impact assessments of repeated applications are necessary.
- Černe, Marko, Palčić, Igor, Major, Nikola, Pasković, Igor, Perković, Josipa, Užila, Zoran, Filipović, Vilim, Romić, Marija, Goreta Ban, Smiljana, Jaćimović, Radojko, Benedik, Ljudmila, Heath, David, Ban, Dean
- Authors: Černe, Marko , Palčić, Igor , Major, Nikola , Pasković, Igor , Perković, Josipa , Užila, Zoran , Filipović, Vilim , Romić, Marija , Goreta Ban, Smiljana , Jaćimović, Radojko , Benedik, Ljudmila , Heath, David , Ban, Dean
- Date: 2021
- Type: Text , Journal article
- Relation: Journal of environmental management Vol. 293, no. (2021), p. 112955-112955
- Full Text: false
- Reviewed:
- Description: This study set out to evaluate the effect of using sewage sludge-derived compost (SSC) or biochar (SSB) as a soil amendment on the phytoaccumulation of potentially toxic elements, PTE (Cd, Cr, Cu, Ni, Pb, Zn) and natural radionuclides (238U and 232Th) by Chinese cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt) in terra rossa and rendzina soils, which are the two common soil types in Croatia. The experiment consisted of a greenhouse pot trial using a three-factor design where soil type, sludge post-stabilisation procedure and amendment rate (12 and 120 mgP/L) were the main factors. At harvest, the concentrations of analytes in the substrate, leaves and roots were measured, from which the edible tissue uptake (ETU) and concentration ratios (CR) were determined. Also, the average daily dose (ADD) and hazard quotient (HQ) were determined to assess the health risk, as well as soil contamination factor (CF). The results showed that neither adding SSC nor SSB affected the soil loading at the rates applied, suggesting a low risk of soil contamination (CF ≤ 1). The ETU of Cd, Cu, and Zn were 0.0061, 1.23, and 0.91 mg/plant from compost-amended soil and 0.0046, 0.78 and 0.65 mg/plant for biochar-amended soil, respectively. This difference suggests that their ETU was higher in compost-amended soils than in soils treated with biochar. The CR data indicate that the bioavailability of Cu (CR of 5.30) is highest at an amendment rate of 12 mgP/L, while for Zn (CR of 0.69), the highest bioaccumulation was observed with an amendment rate of 120 mgP/L. Translocation of Cr, Ni, Pb and 238U to the leaves was limited. Overall, the HQ (<1) for Cd, Cu and Zn in the edible parts confirmed that consuming Chinese cabbage does not threaten human health. Similarly, the daily intake of 232Th remained below the limit (3 μg) set by ICRP, suggesting no radiological risk. Finally, although the amendment rate, which was 10-times the amount stipulated in Croatian regulation and the CR ranged from 0.007 to 5.30, the precautionary principle is advised, and the long-term impact of sewage sludge derived compost or biochar on different plant groups (incl. root vegetables) at the field-scale is recommended. [Display omitted] •Sewage sludge compost or biochar amendment did not result in soil contamination.•Biochar amendment reduced Cd, Cu and Zn edible tissue uptake relative to compost use.•No evidence of phytoaccumulation of Cr, Ni, Pb and 238U in Chinese cabbage leaves.•Levels of Cd, Cu, Zn and 232Th in the edible tissues does not pose a health risk.
- «
- ‹
- 1
- ›
- »