The effects of irrigation water salinity level on faba bean (Vicia faba L.) productivity
- Filipović, Lana, Romić, Davor, Ondrašek, Gabrijel, Mustać, Ivan, Filipović, Vilim
- Authors: Filipović, Lana , Romić, Davor , Ondrašek, Gabrijel , Mustać, Ivan , Filipović, Vilim
- Date: 2020
- Type: Text , Journal article
- Relation: Journal of Central European agriculture Vol. 21, no. 3 (2020), p. 537-542
- Full Text:
- Reviewed:
- Description: In Mediterranean region where seawater intrudes porous karst matrix and salinizes soil and water resources, water used for the irrigation of crops is frequently of inadequate quality. Measuring the productivity of horticultural crops under saline conditions helps to determine whether and when to irrigate crops if water is saline, thus balance between crop water and salt stress. A greenhouse pot experiment was set to study the effects of saline irrigation water on faba bean (Vicia faba L.) biomass and yield parameters. NaCl salinity was applied in a nutrient solution as follows: NaCl0 as control (nutrient solution without added NaCl), NaCl50 (control + 50 mM NaCl), and NaCl100 (control + 100 mM NaCl). Five weeks after salinity treatment started, plant height (cm), number of lateral branches per plant, number of pods and seeds per plant, shoot weight (g), pod weight (g) and seed weight (g) were determined. Compared to control, increased irrigation water salinity statistically significantly decreased measured parameters (P<0.01), except for number of branches and pods. Faba bean productivity decreased proportionally to the irrigation water salinity level, suggesting that optimal saline agriculture management strategy can be to allow for the acceptable yield loss in order to avoid plant water stress.
- Authors: Filipović, Lana , Romić, Davor , Ondrašek, Gabrijel , Mustać, Ivan , Filipović, Vilim
- Date: 2020
- Type: Text , Journal article
- Relation: Journal of Central European agriculture Vol. 21, no. 3 (2020), p. 537-542
- Full Text:
- Reviewed:
- Description: In Mediterranean region where seawater intrudes porous karst matrix and salinizes soil and water resources, water used for the irrigation of crops is frequently of inadequate quality. Measuring the productivity of horticultural crops under saline conditions helps to determine whether and when to irrigate crops if water is saline, thus balance between crop water and salt stress. A greenhouse pot experiment was set to study the effects of saline irrigation water on faba bean (Vicia faba L.) biomass and yield parameters. NaCl salinity was applied in a nutrient solution as follows: NaCl0 as control (nutrient solution without added NaCl), NaCl50 (control + 50 mM NaCl), and NaCl100 (control + 100 mM NaCl). Five weeks after salinity treatment started, plant height (cm), number of lateral branches per plant, number of pods and seeds per plant, shoot weight (g), pod weight (g) and seed weight (g) were determined. Compared to control, increased irrigation water salinity statistically significantly decreased measured parameters (P<0.01), except for number of branches and pods. Faba bean productivity decreased proportionally to the irrigation water salinity level, suggesting that optimal saline agriculture management strategy can be to allow for the acceptable yield loss in order to avoid plant water stress.
- Filipović, Vilim, Defterdarović, Jasmina, Šimůnek, Jiří, Filipović, Lana, Ondrašek, Gabrijel, Romić, Davor, Bogunović, Igor, Mustać, Ivan, Ćurić, Josip, Kodešová, Radka
- Authors: Filipović, Vilim , Defterdarović, Jasmina , Šimůnek, Jiří , Filipović, Lana , Ondrašek, Gabrijel , Romić, Davor , Bogunović, Igor , Mustać, Ivan , Ćurić, Josip , Kodešová, Radka
- Date: 2020
- Type: Text , Journal article
- Relation: Geoderma Vol. 380, no. (2020), p. 114699
- Full Text: false
- Reviewed:
- Description: •Proper assessment of the soil structure of arable soils requires a combination of various methods.•Results of evaporation and leaching experiments were fitted using a single-porosity flow model.•Data collected during flow experiments did not provide evidence of non-equilibrium flow.•Additional dye-staining and X-ray imaging revealed a complex biopore network.•The bi-modal flow behavior was revealed using the dual-permeability modeling of dye transport. The appearance and distribution of soil pores have a significant influence on water flow and solute transport in the soil vadose zone. The pore system is highly variable in arable soils where crop rotation, tillage, trafficking, soil amendments, and various management practices are commonly implemented. The aim of this study was to assess the porous system and preferential flow pathways in a vineyard soil using undisturbed soil columns, and by combining laboratory and numerical methods with dye staining and X-ray imaging. It was hypothesized that the integration of various methods could reveal more information about soil structure, and flow and transport behavior of structured arable soil. Soil water retention and hydraulic conductivity curves were obtained using the evaporation method, while water flow was assessed using intermittent leaching experiments. Water flow and the transport of Brilliant Blue were simulated using HYDRUS-1D. A single-porosity model of soil hydraulic properties provided a good description of data collected during the evaporation experiments. Data collected during leaching experiments did not provide enough experimental evidence for the occurrence of nonequilibrium flow patterns and the differentiation between the single- and dual-permeability models of soil hydraulic properties. However, dye staining and X-ray imaging revealed a complex pore-architecture network with large vertical and horizontal biopores. The staining patterns (Brilliant Blue FCF) within the vertical column sections documented the extent of preferential flow. The study showed that the bi-modal character of pore structure could often be hidden when a limited number or non-adequate methods are applied for its quantification from water flow behavior. The impact of preferential pathways on dye transport can be investigated with observations and simulations. A combination of various methods enabled us to adequately assess vineyard soil structure and fine-tune the description and extent of preferential water flow.
- Filipović, Vilim, Defterdarović, Jasmina, Krevh, Vedran, Filipović, Lana, Ondrašek, Gabrijel, Kranjčec, Filip, Magdić, Ivan, Rubinić, Vedran, Stipičević, Sanja, Mustać, Ivan, Bubalo Kovačić, Marina, He, Hailong, Haghverdi, Amir, Gerke, Horst
- Authors: Filipović, Vilim , Defterdarović, Jasmina , Krevh, Vedran , Filipović, Lana , Ondrašek, Gabrijel , Kranjčec, Filip , Magdić, Ivan , Rubinić, Vedran , Stipičević, Sanja , Mustać, Ivan , Bubalo Kovačić, Marina , He, Hailong , Haghverdi, Amir , Gerke, Horst
- Date: 2021
- Type: Text , Journal article
- Relation: Agronomy (Basel) Vol. 12, no. 1 (2021), p. 33
- Full Text: false
- Reviewed:
- Description: Erosion has been reported as one of the top degradation processes that negatively affect agricultural soils. The study objective was to identify hydropedological factors controlling soil water dynamics in erosion-affected hillslope vineyard soils. The hydropedological study was conducted at identically-managed Jastrebarsko (location I), and Jazbina (II) and (III) sites with Stagnosol soils. Soil Hydraulic Properties (SHP) were estimated on intact soil cores using Evaporation and WP4C methodssoil hydraulic functions were fitted using HYPROP-FIT software. For Apg and Bg/Btg horizons, uni- and bimodal soil hydraulic models could be well fitted to data although, the bimodal model performed better in particular cases where data indicated non-uniform pore size distribution. With these SHP estimations, a one-year (2020) water flow scenario was simulated using HYDRUS-1D to compare water balance results obtained with uni- and bimodal hydraulic functions. Simulation results revealed relatively similar flux distribution at each hillslope position between the water balance components infiltration, surface runoff, and drainage. However, at the bottom profile at Jastrebarsko, bimodality of the hydraulic functions led to increased drainage. Soil water storage was reduced, and the vertical movement increased due to modified soil water retention curve shapes. Adequate parameterization of SHP is required to capture the hydropedological response of heterogenous erosion-affected soil systems.
Determination of soil hydraulic parameters and evaluation of water dynamics and nitrate leaching in the unsaturated layered zone: A modeling case study in Central Croatia
- Defterdarović, Jasmina, Filipović, Lana, Kranjčec, Filip, Ondrašek, Gabrijel, Kikić, Diana, Novosel, Alen, Mustać, Ivan, Krevh, Vedran, Magdić, Ivan, Rubinić, Vedran, Bogunović, Igor, Dugan, Ivan, Čopec, Krešimir, He, Hailong, Filipović, Vilim
- Authors: Defterdarović, Jasmina , Filipović, Lana , Kranjčec, Filip , Ondrašek, Gabrijel , Kikić, Diana , Novosel, Alen , Mustać, Ivan , Krevh, Vedran , Magdić, Ivan , Rubinić, Vedran , Bogunović, Igor , Dugan, Ivan , Čopec, Krešimir , He, Hailong , Filipović, Vilim
- Date: 2021
- Type: Journal article
- Relation: Sustainability (Basel, Switzerland) Vol. 13, no. 12 (2021), p. 6688
- Full Text:
- Reviewed:
- Description: Nitrate leaching through soil layers to groundwater may cause significant degradation of natural resources. The aims of this study were: (i) to estimate soil hydraulic properties (SHPs) of the similar soil type with same management on various locations (ii) to determine annual water dynamics and (iii) to estimate the impact of subsoil horizon properties on nitrate leaching. The final goal was to compare the influence of different SHPs and layering on water dynamics and nitrate leaching. The study was conducted in central Croatia (Zagreb), at four locations on Calcaric Phaeozem, Calcaric Regosol, and Calcaric Fluvic Phaeozem soil types. Soil hydraulic parameters were estimated using the HYPROP system and HYPROP-FIT software. Water dynamics and nitrate leaching were evaluated using HYDRUS 2D/3D during a period of 365 days. The amount of water in the soil under saturated conditions varied from 0.422 to 0.535 cm3 cm−3 while the hydraulic conductivity varied from 3 cm day−1 to 990.9 cm day−1. Even though all locations have the same land use and climatic conditions with similar physical properties, hydraulic parameters varied substantially. The amount and velocity of transported nitrate (HYDRUS 2D/3D) were affected by reduced hydraulic conductivity of the subsoil as nitrates are primarily transported via advective flux. Despite the large differences in SHPs of the topsoil layers, the deeper soil layers, having similar SHPs, imposed a buffering effect preventing faster nitrate downward transport. This contributed to a very similar distribution of nitrates through the soil profile at the end of simulation period. This case study indicated the importance of carefully selecting relevant parameters in multilayered soil systems when evaluating groundwater pollution risk.
- Authors: Defterdarović, Jasmina , Filipović, Lana , Kranjčec, Filip , Ondrašek, Gabrijel , Kikić, Diana , Novosel, Alen , Mustać, Ivan , Krevh, Vedran , Magdić, Ivan , Rubinić, Vedran , Bogunović, Igor , Dugan, Ivan , Čopec, Krešimir , He, Hailong , Filipović, Vilim
- Date: 2021
- Type: Journal article
- Relation: Sustainability (Basel, Switzerland) Vol. 13, no. 12 (2021), p. 6688
- Full Text:
- Reviewed:
- Description: Nitrate leaching through soil layers to groundwater may cause significant degradation of natural resources. The aims of this study were: (i) to estimate soil hydraulic properties (SHPs) of the similar soil type with same management on various locations (ii) to determine annual water dynamics and (iii) to estimate the impact of subsoil horizon properties on nitrate leaching. The final goal was to compare the influence of different SHPs and layering on water dynamics and nitrate leaching. The study was conducted in central Croatia (Zagreb), at four locations on Calcaric Phaeozem, Calcaric Regosol, and Calcaric Fluvic Phaeozem soil types. Soil hydraulic parameters were estimated using the HYPROP system and HYPROP-FIT software. Water dynamics and nitrate leaching were evaluated using HYDRUS 2D/3D during a period of 365 days. The amount of water in the soil under saturated conditions varied from 0.422 to 0.535 cm3 cm−3 while the hydraulic conductivity varied from 3 cm day−1 to 990.9 cm day−1. Even though all locations have the same land use and climatic conditions with similar physical properties, hydraulic parameters varied substantially. The amount and velocity of transported nitrate (HYDRUS 2D/3D) were affected by reduced hydraulic conductivity of the subsoil as nitrates are primarily transported via advective flux. Despite the large differences in SHPs of the topsoil layers, the deeper soil layers, having similar SHPs, imposed a buffering effect preventing faster nitrate downward transport. This contributed to a very similar distribution of nitrates through the soil profile at the end of simulation period. This case study indicated the importance of carefully selecting relevant parameters in multilayered soil systems when evaluating groundwater pollution risk.
Modeling water flow and phosphorus sorption in a soil amended with sewage sludge and olive pomace as compost or biochar
- Filipović, Vilim, Černe, Marko, Šimůnek, Jiří, Filipović, Lana, Romić, Marija, Ondrašek, Gabrijel, Bogunović, Igor, Mustać, Ivan, Krevh, Vedran, Ferenčević, Anja, Robinson, David, Palčić, Igor, Pasković, Igor, Goreta Ban, Smiljana, Užila, Zoran, Ban, Dean
- Authors: Filipović, Vilim , Černe, Marko , Šimůnek, Jiří , Filipović, Lana , Romić, Marija , Ondrašek, Gabrijel , Bogunović, Igor , Mustać, Ivan , Krevh, Vedran , Ferenčević, Anja , Robinson, David , Palčić, Igor , Pasković, Igor , Goreta Ban, Smiljana , Užila, Zoran , Ban, Dean
- Date: 2020
- Type: Text , Journal article
- Relation: Agronomy (Basel) Vol. 10, no. 8 (2020), p. 1163
- Full Text:
- Reviewed:
- Description: Organic amendments are often reported to improve soil properties, promote plant growth, and improve crop yield. This study aimed to investigate the effects of the biochar and compost produced from sewage sludge and olive pomace on soil hydraulic properties, water flow, and P transport (i.e., sorption) using numerical modeling (HYDRUS-1D) applied to two soil types (Terra Rosa and Rendzina). Evaporation and leaching experiments on soil cores and repacked soil columns were performed to determine the soil water retention, hydraulic conductivity, P leaching potential, and P sorption capacity of these mixtures. In the majority of treatments, the soil water retention showed a small increase compared to the control soil. A reliable fit with the modified van Genuchten model was found, which was also confirmed by water flow modeling of leaching experiments (R2 0.99). The results showed a high P sorption in all the treatments (Kd 21.24 to 53.68 cm3 g−1), and a high model reliability when the inverse modeling procedure was used (R2 0.93–0.99). Overall, adding sewage sludge or olive pomace as compost or biochar improved the Terra Rosa and Rendzina water retention and did not increase the P mobility in these soils, proving to be a sustainable source of carbon and P-rich materials.
- Authors: Filipović, Vilim , Černe, Marko , Šimůnek, Jiří , Filipović, Lana , Romić, Marija , Ondrašek, Gabrijel , Bogunović, Igor , Mustać, Ivan , Krevh, Vedran , Ferenčević, Anja , Robinson, David , Palčić, Igor , Pasković, Igor , Goreta Ban, Smiljana , Užila, Zoran , Ban, Dean
- Date: 2020
- Type: Text , Journal article
- Relation: Agronomy (Basel) Vol. 10, no. 8 (2020), p. 1163
- Full Text:
- Reviewed:
- Description: Organic amendments are often reported to improve soil properties, promote plant growth, and improve crop yield. This study aimed to investigate the effects of the biochar and compost produced from sewage sludge and olive pomace on soil hydraulic properties, water flow, and P transport (i.e., sorption) using numerical modeling (HYDRUS-1D) applied to two soil types (Terra Rosa and Rendzina). Evaporation and leaching experiments on soil cores and repacked soil columns were performed to determine the soil water retention, hydraulic conductivity, P leaching potential, and P sorption capacity of these mixtures. In the majority of treatments, the soil water retention showed a small increase compared to the control soil. A reliable fit with the modified van Genuchten model was found, which was also confirmed by water flow modeling of leaching experiments (R2 0.99). The results showed a high P sorption in all the treatments (Kd 21.24 to 53.68 cm3 g−1), and a high model reliability when the inverse modeling procedure was used (R2 0.93–0.99). Overall, adding sewage sludge or olive pomace as compost or biochar improved the Terra Rosa and Rendzina water retention and did not increase the P mobility in these soils, proving to be a sustainable source of carbon and P-rich materials.
- Krevh, Vedran, Filipović, Vilim, Filipović, Lana, Mateković, Valentina, Petošić, Dragutin, Mustać, Ivan, Ondrašek, Gabrijel, Bogunović, Igor, Kovač, Zoran, Pereira, Paulo, Sasidharan, Salini, He, Hailong, Groh, Jannis, Stumpp, Christine, Brunetti, Giuseppe
- Authors: Krevh, Vedran , Filipović, Vilim , Filipović, Lana , Mateković, Valentina , Petošić, Dragutin , Mustać, Ivan , Ondrašek, Gabrijel , Bogunović, Igor , Kovač, Zoran , Pereira, Paulo , Sasidharan, Salini , He, Hailong , Groh, Jannis , Stumpp, Christine , Brunetti, Giuseppe
- Date: 2022
- Type: Text , Journal article
- Relation: Catena Vol. 211, no. (2022), p.
- Full Text: false
- Reviewed:
- Description: This study aims to explain complex vadose zone hydrology of fine-textured (gley) agricultural soils influenced by a shallow and dynamic groundwater (GW) levels. The field site was located in the Bi
Quantification of intra- vs. inter-row leaching of major plant nutrients in sloping vineyard soils
- Filipović, Lana, Krevh, Vedran, Chen, Rui, Defterdarović, Jasmina, Kovač, Zoran, Mustać, Ivan, Bogunović, Igor, He, Hailong, Baumgartl, Thomas, Gerke, Horst, Toor, Gurpal, Filipović, Vilim
- Authors: Filipović, Lana , Krevh, Vedran , Chen, Rui , Defterdarović, Jasmina , Kovač, Zoran , Mustać, Ivan , Bogunović, Igor , He, Hailong , Baumgartl, Thomas , Gerke, Horst , Toor, Gurpal , Filipović, Vilim
- Date: 2023
- Type: Text , Journal article
- Relation: Water (Switzerland) Vol. 15, no. 4 (2023), p.
- Full Text:
- Reviewed:
- Description: Nutrient leaching from agricultural soils presents an economic loss for farmers and can degrade the quality of the surrounding environment. Thus, leachates from 18 in situ wick lysimeters, installed at 40 cm soil depth at the vineyard hilltop, backslope, and footslope intra- and inter-row area (SUPREHILL Critical Zone Observatory, Croatia) were collected monthly over two years and analyzed for major plant nutrient ions. Our objectives were to quantify nutrient losses via leaching from the hilltop towards the backslope and to the footslope, and to compare leaching from vine plant rows (intra-row) with grassed areas between vine rows (inter-row). We found that the concentrations of nitrate, orthophosphate, and potassium were significantly higher in leachates collected at the footslope as compared to the hilltop and backslope only at intra- and not at inter-row positions, while ammonium was independent of the slope and row positions. The vineyard intra-row is identified as the probable spatial origin of nutrient leaching along the slope, thus confirming spatially different contributions of overall hillslope to major plant nutrients leaching. The experimental field scheme used in this study, which separately analyses vineyard intra- and inter-row, was confirmed to be an adequate approach for optimizing vineyard management practices. © 2023 by the authors.
- Authors: Filipović, Lana , Krevh, Vedran , Chen, Rui , Defterdarović, Jasmina , Kovač, Zoran , Mustać, Ivan , Bogunović, Igor , He, Hailong , Baumgartl, Thomas , Gerke, Horst , Toor, Gurpal , Filipović, Vilim
- Date: 2023
- Type: Text , Journal article
- Relation: Water (Switzerland) Vol. 15, no. 4 (2023), p.
- Full Text:
- Reviewed:
- Description: Nutrient leaching from agricultural soils presents an economic loss for farmers and can degrade the quality of the surrounding environment. Thus, leachates from 18 in situ wick lysimeters, installed at 40 cm soil depth at the vineyard hilltop, backslope, and footslope intra- and inter-row area (SUPREHILL Critical Zone Observatory, Croatia) were collected monthly over two years and analyzed for major plant nutrient ions. Our objectives were to quantify nutrient losses via leaching from the hilltop towards the backslope and to the footslope, and to compare leaching from vine plant rows (intra-row) with grassed areas between vine rows (inter-row). We found that the concentrations of nitrate, orthophosphate, and potassium were significantly higher in leachates collected at the footslope as compared to the hilltop and backslope only at intra- and not at inter-row positions, while ammonium was independent of the slope and row positions. The vineyard intra-row is identified as the probable spatial origin of nutrient leaching along the slope, thus confirming spatially different contributions of overall hillslope to major plant nutrients leaching. The experimental field scheme used in this study, which separately analyses vineyard intra- and inter-row, was confirmed to be an adequate approach for optimizing vineyard management practices. © 2023 by the authors.
- «
- ‹
- 1
- ›
- »