Your selections:

8Balbuena, Camino
6Baca, Martin
5Sugeng, Kiki Ariyanti
5Tang, Jianmin
3Marcote, Xavier
3Slamin,
2Barker, Ewan
2Ryan, Joe
1Ahmad, Abeed
1Baskoro, Edy
1Brankovic, Ljiljana
1Cholily, Yus Mochamad
1Das, K. C.
1Jendrol, Stanislav
1Jiang, T.
1Rodger, Chris
1Simanjuntak, Rinovia
1Tkac, M.

Show More

Show Less

140101 Pure Mathematics
7Graph theory
6Connectivity
5Antimagic labeling
30802 Computation Theory and Mathematics
3Cages
3Number theory
3Simulated annealing
3Theorem proving
2(k,g)-cage
2Algorithms
2Diameter
2Digraphs
2Genetic algorithms
2Moore bound
2Numerical methods
2Out-degree
2Set theory
2Vertex connectivity
1Algorithm

Show More

Show Less

Hybrid simulated annealing and genetic algorithm for degree/diameter problem

- Tang, Jianmin, Miller, Mirka, Lin, Yuqing

**Authors:**Tang, Jianmin , Miller, Mirka , Lin, Yuqing**Date:**2005**Type:**Text , Conference paper**Relation:**Paper pesented at Sixteenth Australasian Workshop on Combinatorial Algorithms, AWOCA 2005, Ballarat, Victoria : 18th-21st September 2005 p. 321-331**Full Text:**false**Description:**The degree/diameter problem is to determine the largest graphs or digraphs of given maximum degree and given diameter. This paper deals with directed graphs. General upper bounds, called Moore bounds, exist for the largest possible order of such digraphs of maximum degree d and diameter k. It is known that simulated annealing and genetic algorithm are effective techniques to identify global optimization solutions. This paper describes our attempt to build a Hybrid Simulated Annealing and Genetic Algorithm (HSAGA) that can be used to construct larger digraphs, and displays our preliminary results obtained by HSAGA.**Description:**2003001438

Further results in d-antimagic labelings of antiprisms

- Lin, Yuqing, Ahmad, Abeed, Miller, Mirka, Sugeng, Kiki Ariyanti, Baca, Martin

**Authors:**Lin, Yuqing , Ahmad, Abeed , Miller, Mirka , Sugeng, Kiki Ariyanti , Baca, Martin**Date:**2004**Type:**Text , Conference paper**Relation:**Paper presented at AWOCA 2004: Fifteenth Australasian Workshop on Combinatorial Algorithms, Ballina, New South Wales : 6-9th July, 2004**Full Text:**false**Reviewed:****Description:**E1**Description:**2003000900

- Baca, Martin, Lin, Yuqing, Miller, Mirka

**Authors:**Baca, Martin , Lin, Yuqing , Miller, Mirka**Date:**2007**Type:**Text , Journal article**Relation:**Utilitas Mathematica Vol. 72, no. (2007), p. 65-75**Full Text:**false**Reviewed:****Description:**In this paper we deal with the problem of labeling the vertices, edges and faces of a grid graph by the consecutive integers from 1 to |V| + |E| + |F| in such a way that the label of a face and the labels of the vertices and edges surrounding that face all together add up to a weight of that face. These face weights then form an arithmetic progression with common difference d.**Description:**C1**Description:**2003004808

Super (a,d)-vertex-antimagic total labelings

- Miller, Mirka, Sugeng, Kiki Ariyanti, Lin, Yuqing, Baca, Martin

**Authors:**Miller, Mirka , Sugeng, Kiki Ariyanti , Lin, Yuqing , Baca, Martin**Date:**2005**Type:**Text , Journal article**Relation:**The Journal of Combinatorial Mathematics and Combinatorial Computing Vol. 55, no. (2005), p. 91-102**Full Text:**false**Reviewed:****Description:**C1**Description:**2003001401

On graphs of maximum size with given girth and order

- Miller, Mirka, Lin, Yuqing, Brankovic, Ljiljana, Tang, Jianmin

**Authors:**Miller, Mirka , Lin, Yuqing , Brankovic, Ljiljana , Tang, Jianmin**Date:**2006**Type:**Text , Conference paper**Relation:**Paper presented at AWOCA 2006, 17th Australasian Workshop on Combinatorial Algorithms, Uluru, Australia : 13th July, 2006**Full Text:**false**Reviewed:****Description:**E1**Description:**2003001918

On d-antimagic labelings of prisms

- Lin, Yuqing, Slamin,, Baca, Martin, Miller, Mirka

**Authors:**Lin, Yuqing , Slamin, , Baca, Martin , Miller, Mirka**Date:**2004**Type:**Text , Journal article**Relation:**Ars Combinatoria: A Canadian Journal of Combinatorics Vol. 72, no. (2004), p. 65-76**Full Text:**false**Reviewed:****Description:**C1**Description:**2003000907

An open problem : (4; g)-cages with odd g <= 5 are tightly connected

- Tang, Jianmin, Balbuena, Camino, Lin, Yuqing, Miller, Mirka

**Authors:**Tang, Jianmin , Balbuena, Camino , Lin, Yuqing , Miller, Mirka**Date:**2007**Type:**Text , Conference paper**Relation:**Paper presented at Thirteenth Computing : The Australasian Theory Symposium, CATS2007, Ballarat, Victoria : January 30th-Febuary 2nd p. 141-144**Full Text:**false**Description:**Interconnection networks form an important area which has received much attention, both in theoretical research and in practice. From theoretical point of view, an interconnection network can be modelled by a graph, where the vertices of the graph represent the nodes of the network and the edges of the graph represent connections between the nodes in the network. Fault tolerance is an important performance feature when designing a network, and the connectivity of the underlying graph is one of the measures of fault tolerance for a network. A graph is connected if there is a path between any two vertices of G. We say that G is t-connected if the deletion of at least t vertices of G is required to disconnect the graph. A graph with minimum degree \delta\ is maximally connected if it is \delta\-connected. A graph is superconnected if its only minimum disconnecting sets are those induced by the neighbors of a vertex; a graph is said to be tightly superconnected if (i) any minimum disconnecting set is the set of neighbors of a single vertex; and (ii) the deletion of a minimum disconnecting set results in a graph with two components (one of which has only one vertex, another component is a connected graph). A (\delta\; g) - cage is a \delta\-regular graph with girth g and with the least possible number of vertices. In this paper we consider the problem of whether or not (4; g)-cages for g >= 5 are tightly superconnected. We present some partial results and the remaining open problems.**Description:**2003005018

Conjectures and open problems on face antimagic evaluations of graphs

- Miller, Mirka, Baca, Martin, Baskoro, Edy, Cholily, Yus Mochamad, Jendrol, Stanislav, Lin, Yuqing, Ryan, Joe, Simanjuntak, Rinovia, Slamin,, Sugeng, Kiki Ariyanti

**Authors:**Miller, Mirka , Baca, Martin , Baskoro, Edy , Cholily, Yus Mochamad , Jendrol, Stanislav , Lin, Yuqing , Ryan, Joe , Simanjuntak, Rinovia , Slamin, , Sugeng, Kiki Ariyanti**Date:**2005**Type:**Text , Journal article**Relation:**Journal of Indonesian Mathematical Society MIHMI Vol. 11, no. 2 (2005), p. 175-192**Full Text:**false**Reviewed:****Description:**C1**Description:**2003001408

A survey on the connectivity of cages

**Authors:**Miller, Mirka , Lin, Yuqing**Date:**2005**Type:**Text , Conference paper**Relation:**Paper presented at the Sixteenth Australasian Workshop on Combinatorial Algorithms, 18-21 September 2005, Ballarat, Australia, Ballarat, Victoria : 18th -21st September, 2005**Full Text:**false**Reviewed:****Description:**E1**Description:**2003001393

All (k;g)-cages are k-edge-connected

- Lin, Yuqing, Miller, Mirka, Rodger, Chris

**Authors:**Lin, Yuqing , Miller, Mirka , Rodger, Chris**Date:**2005**Type:**Text , Journal article**Relation:**Journal of Graph Theory Vol. 48, no. 3 (2005), p. 219-227**Full Text:**false**Reviewed:****Description:**A (k;g)-cage is a k-regular graph with girth g and with the least possible number of vertices. In this paper, we prove that (k;g)-cages are k-edge-connected if g is even. Earlier, Wang, Xu, and Wang proved that (k;g)-cages are k-edge-connected if g is odd. Combining our results, we conclude that the (k;g)-cages are k-edge-connected. © 2005 wiley Periodicals, Inc.**Description:**C1

On the degrees of a strongly vertex-magic graph

- Balbuena, Camino, Barker, Ewan, Das, K. C., Lin, Yuqing, Miller, Mirka, Ryan, Joe, Slamin,, Sugeng, Kiki Ariyanti, Tkac, M.

**Authors:**Balbuena, Camino , Barker, Ewan , Das, K. C. , Lin, Yuqing , Miller, Mirka , Ryan, Joe , Slamin, , Sugeng, Kiki Ariyanti , Tkac, M.**Date:**2006**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 306, no. 6 (2006), p. 539-551**Full Text:**false**Reviewed:****Description:**Let G=(V,E) be a finite graph, where |V|=n≥2 and |E|=e≥1. A vertex-magic total labeling is a bijection λ from V∪E to the set of consecutive integers {1,2,...,n+e} with the property that for every v∈V, λ(v)+∑w∈N(v)λ(vw)=h for some constant h. Such a labeling is strong if λ(V)={1,2,...,n}. In this paper, we prove first that the minimum degree of a strongly vertex-magic graph is at least two. Next, we show that if 2e≥10n2-6n+1, then the minimum degree of a strongly vertex-magic graph is at least three. Further, we obtain upper and lower bounds of any vertex degree in terms of n and e. As a consequence we show that a strongly vertex-magic graph is maximally edge-connected and hamiltonian if the number of edges is large enough. Finally, we prove that semi-regular bipartite graphs are not strongly vertex-magic graphs, and we provide strongly vertex-magic total labeling of certain families of circulant graphs. © 2006 Elsevier B.V. All rights reserved**Description:**C1**Description:**2003001603

- Baca, Martin, Lin, Yuqing, Miller, Mirka, Youssef, Maged

**Authors:**Baca, Martin , Lin, Yuqing , Miller, Mirka , Youssef, Maged**Date:**2007**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 307, no. 11-12 (May 2007), p. 1232-1244**Full Text:**false**Reviewed:****Description:**For a graph G = (V, E), a bijection g from V(G) boolean OR E(G) into {1, 2,..., vertical bar V(G)vertical bar + vertical bar E(G)vertical bar} is called (a, d)-edge-antimagic total labeling of G if the edge-weights w(xy) = g(x) + g(y) + g(xy), xy E E(G), form an arithmetic progression starting from a and having common difference d. An (a, d)-edge-antimagic total labeling is called super (a, d)-edge-antimagic total if g(V(G)) = {1, 2,..., vertical bar V(G)vertical bar}. We study super (a, d)-edge-antimagic properties of certain classes of graphs, including friendship graphs, wheels, fans, complete graphs and complete bipartite graphs. (c) 2006 Elsevier B.V. All rights reserved.**Description:**2003004910

Calculating the extremal number ex (v ; {C3, C4, ..., Cn})

- Tang, Jianmin, Lin, Yuqing, Miller, Mirka

**Authors:**Tang, Jianmin , Lin, Yuqing , Miller, Mirka**Date:**2006**Type:**Text , Journal article**Relation:**Electronic Notes in Discrete Mathematics Vol. 27, no. (2006), p. 101-102**Full Text:**false**Reviewed:****Description:**This paper introduces and analyzes a parallel method of simulated annealing. Borrowing from genetic algorithms, an effective combination of simulated annealing and genetic algorithms, called parallel recombinative simulated annealing, is developed. This new algorithm strives to retain the desirable asymptotic convergence properties of simulated annealing, while adding the populations approach and recombinative power of genetic algorithms. The algorithm iterates a population of solutions rather than a single solution, employing a binary recombination operator as well as a unary neighborhood operator. Proofs of global convergence are given for two variations of the algorithm. Convergence behavior is examined, and empirical distributions are compared to Boltzmann distributions. Parallel recombinative simulated annealing is amenable to straightforward implementation on SIMD, MIMD, or shared-memory machines. The algorithm, implemented on the CM-5, is run repeatedly on two deceptive problems to demonstrate the added implicit parallelism and faster convergence which can result from larger population sizes.**Description:**C1

HSAGA and its application for the construction of near-Moore digraphs

- Tang, Jianmin, Miller, Mirka, Lin, Yuqing

**Authors:**Tang, Jianmin , Miller, Mirka , Lin, Yuqing**Date:**2008**Type:**Text , Journal article**Relation:**Journal of Discrete Algorithms Vol. 6, no. 1 (2008), p. 73-84**Full Text:**false**Reviewed:****Description:**The degree/diameter problem is to determine the largest graphs or digraphs of given maximum degree and given diameter. This paper deals with directed graphs. General upper bounds, called Moore bounds, exist for the largest possible order of such digraphs of maximum degree d and given diameter k. It is known that simulated annealing and genetic algorithm are effective techniques to identify global optimal solutions. This paper describes our attempt to build a Hybrid Simulated Annealing and Genetic Algorithm (HSAGA) that can be used to construct large digraphs. We present our new results obtained by HSAGA, as well as several related open problems. © 2007 Elsevier B.V. All rights reserved.**Description:**C1

- Balbuena, Camino, Barker, Ewan, Lin, Yuqing, Miller, Mirka, Sugeng, Kiki Ariyanti

**Authors:**Balbuena, Camino , Barker, Ewan , Lin, Yuqing , Miller, Mirka , Sugeng, Kiki Ariyanti**Date:**2006**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 306, no. 16 (2006), p. 1817-1829**Full Text:**false**Reviewed:****Description:**Let G be a graph of order n and size e. A vertex-magic total labeling is an assignment of the integers 1, 2, ..., n + e to the vertices and the edges of G, so that at each vertex, the vertex label and the labels on the edges incident at that vertex, add to a fixed constant, called the magic number of G. Such a labeling is a-vertex consecutive magic if the set of the labels of the vertices is { a + 1, a + 2, ..., a + n }, and is b-edge consecutive magic if the set of labels of the edges is { b + 1, b + 2, ..., b + e }. In this paper we prove that if an a-vertex consecutive magic graph has isolated vertices then the order and the size satisfy (n - 1)**Description:**C1**Description:**2003001604

Improved lower bound for the vertex connectivity of (delta;g)-cages

- Lin, Yuqing, Miller, Mirka, Balbuena, Camino

**Authors:**Lin, Yuqing , Miller, Mirka , Balbuena, Camino**Date:**2005**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 299, no. 1-3 (Aug 2005), p. 162-171**Full Text:**false**Reviewed:****Description:**A (delta, g)-cage is a delta-regular graph with girth g and with the least possible number of vertices. We prove that all (delta, g)-cages are r-connected with r >= root(delta + 1) for g >= 7 odd. This result supports the conjecture of Fu, Huang and Rodger that all (delta; g)-cages are delta-connected. (c) 2005 Elsevier B.V. All rights reserved.**Description:**C1**Description:**2003001397

On the connectivity of (k, g)-cages of even girth

- Lin, Yuqing, Balbuena, Camino, Marcote, Xavier, Miller, Mirka

**Authors:**Lin, Yuqing , Balbuena, Camino , Marcote, Xavier , Miller, Mirka**Date:**2008**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 308, no. 15 (2008), p. 3249-3256**Full Text:**false**Reviewed:****Description:**A (k,g)-cage is a k-regular graph with girth g and with the least possible number of vertices. In this paper we give a brief overview of the current results on the connectivity of (k,g)-cages and we improve the current known best lower bound on the vertex connectivity of (k,g)-cages for g even. © 2007 Elsevier B.V. All rights reserved.**Description:**C1

All (k;g)-cages are edge-superconnected

- Lin, Yuqing, Miller, Mirka, Balbuena, Camino, Marcote, Xavier

**Authors:**Lin, Yuqing , Miller, Mirka , Balbuena, Camino , Marcote, Xavier**Date:**2006**Type:**Text , Journal article**Relation:**Networks Vol. 47, no. 2 (2006), p. 102-110**Full Text:**false**Reviewed:****Description:**A (k;g)-cage is k-regular graph with girth g and with the least possible number of vertices. In this article we prove that (k;g)-cages are edge-superconnected if g is even. Earlier, Marcote and Balbuena proved that (k;g)-cages are edge-superconnected if g is odd [Networks 43 (2004), 54-59]. Combining our results, we conclude that all (k;g)-cages are edge-superconnected. © 2005 Wiley Periodicals, Inc.**Description:**C1**Description:**2003001830

A lower bound on the order of regular graphs with given girth pair

- Balbuena, Camino, Jiang, T., Lin, Yuqing, Marcote, Xavier, Miller, Mirka

**Authors:**Balbuena, Camino , Jiang, T. , Lin, Yuqing , Marcote, Xavier , Miller, Mirka**Date:**2007**Type:**Text , Journal article**Relation:**Journal of Graph Theory Vol. 55, no. 2 (2007), p. 153-163**Full Text:**false**Reviewed:****Description:**The girth pair of a graph gives the length of a shortest odd and a shortest even cycle. The existence of regular graphs with given degree and girth pair was proved by Harary and Kovács [Regular graphs with given girth pair, J Graph Theory 7 (1983), 209-218]. A (**Description:**C1**Description:**2003004727

Diameter-sufficient conditions for a graph to be super-restricted connected

- Balbuena, Camino, Lin, Yuqing, Miller, Mirka

**Authors:**Balbuena, Camino , Lin, Yuqing , Miller, Mirka**Date:**2007**Type:**Text , Journal article**Relation:**Discrete Applied Mathematics Vol. , no. (2007), p.**Full Text:**false**Reviewed:****Description:**A vertex-cut X is said to be a restricted cut of a graph G if it is a vertex-cut such that no vertex u in G has all its neighbors in X. Clearly, each connected component of G - X must have at least two vertices. The restricted connectivity**Description:**C1

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?