An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran
- Saadat, Mahdi, Khandelwal, Manoj, Monjezi, Masoud
- Authors: Saadat, Mahdi , Khandelwal, Manoj , Monjezi, Masoud
- Date: 2014
- Type: Text , Journal article
- Relation: Journal of Rock Mechanics and Geotechnical Engineering Vol. 6, no. 1 (2014), p. 67-76
- Full Text: false
- Reviewed:
- Description: Blast-induced ground vibration is one of the inevitable outcomes of blasting in mining projects and may cause substantial damage to rock mass as well as nearby structures and human beings. In this paper, an attempt has been made to present an application of artificial neural network (ANN) to predict the blast-induced ground vibration of the Gol-E-Gohar (GEG) iron mine, Iran. A four-layer feed-forward back propagation multi-layer perceptron (MLP) was used and trained with Levenberg-Marquardt algorithm. To construct ANN models, the maximum charge per delay, distance from blasting face to monitoring point, stemming and hole depth were taken as inputs, whereas peak particle velocity (PPV) was considered as an output parameter. A database consisting of 69 data sets recorded at strategic and vulnerable locations of GEG iron mine was used to train and test the generalization capability of ANN models. Coefficient of determination (R2) and mean square error (MSE) were chosen as the indicators of the performance of the networks. A network with architecture 4-11-5-1 and R2 of 0.957 and MSE of 0.000722 was found to be optimum. To demonstrate the supremacy of ANN approach, the same 69 data sets were used for the prediction of PPV with four common empirical models as well as multiple linear regression (MLR) analysis. The results revealed that the proposed ANN approach performs better than empirical and MLR models. © 2013 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.
Prediction of blast-induced ground vibration at a limestone quarry : an artificial intelligence approach
- Arthur, Clement, Bhatawdekar, Ramesh, Mohamad, Edy, Sabri, Mohanad, Bohra, Manish, Khandelwal, Manoj, Kwon, Sangki
- Authors: Arthur, Clement , Bhatawdekar, Ramesh , Mohamad, Edy , Sabri, Mohanad , Bohra, Manish , Khandelwal, Manoj , Kwon, Sangki
- Date: 2022
- Type: Text , Journal article
- Relation: Applied Sciences (Switzerland) Vol. 12, no. 18 (2022), p.
- Full Text:
- Reviewed:
- Description: Ground vibration is one of the most unfavourable environmental effects of blasting activities, which can cause serious damage to neighboring homes and structures. As a result, effective forecasting of their severity is critical to controlling and reducing their recurrence. There are several conventional vibration predictor equations available proposed by different researchers but most of them are based on only two parameters, i.e., explosive charge used per delay and distance between blast face to the monitoring point. It is a well-known fact that blasting results are influenced by a number of blast design parameters, such as burden, spacing, powder factor, etc. but these are not being considered in any of the available conventional predictors and due to that they show a high error in predicting blast vibrations. Nowadays, artificial intelligence has been widely used in blast engineering. Thus, three artificial intelligence approaches, namely Gaussian process regression (GPR), extreme learning machine (ELM) and backpropagation neural network (BPNN) were used in this study to estimate ground vibration caused by blasting in Shree Cement Ras Limestone Mine in India. To achieve that aim, 101 blasting datasets with powder factor, average depth, distance, spacing, burden, charge weight, and stemming length as input parameters were collected from the mine site. For comparison purposes, a simple multivariate regression analysis (MVRA) model as well as, a nonparametric regression-based technique known as multivariate adaptive regression splines (MARS) was also constructed using the same datasets. This study serves as a foundational study for the comparison of GPR, BPNN, ELM, MARS and MVRA to ascertain their respective predictive performances. Eighty-one (81) datasets representing 80% of the total blasting datasets were used to construct and train the various predictive models while 20 data samples (20%) were utilized for evaluating the predictive capabilities of the developed predictive models. Using the testing datasets, major indicators of performance, namely mean squared error (MSE), variance accounted for (VAF), correlation coefficient (R) and coefficient of determination (R2) were compared as statistical evaluators of model performance. This study revealed that the GPR model exhibited superior predictive capability in comparison to the MARS, BPNN, ELM and MVRA. The GPR model showed the highest VAF, R and R2 values of 99.1728%, 0.9985 and 0.9971 respectively and the lowest MSE of 0.0903. As a result, the blast engineer can employ GPR as an effective and appropriate method for forecasting blast-induced ground vibration. © 2022 by the authors.
- Authors: Arthur, Clement , Bhatawdekar, Ramesh , Mohamad, Edy , Sabri, Mohanad , Bohra, Manish , Khandelwal, Manoj , Kwon, Sangki
- Date: 2022
- Type: Text , Journal article
- Relation: Applied Sciences (Switzerland) Vol. 12, no. 18 (2022), p.
- Full Text:
- Reviewed:
- Description: Ground vibration is one of the most unfavourable environmental effects of blasting activities, which can cause serious damage to neighboring homes and structures. As a result, effective forecasting of their severity is critical to controlling and reducing their recurrence. There are several conventional vibration predictor equations available proposed by different researchers but most of them are based on only two parameters, i.e., explosive charge used per delay and distance between blast face to the monitoring point. It is a well-known fact that blasting results are influenced by a number of blast design parameters, such as burden, spacing, powder factor, etc. but these are not being considered in any of the available conventional predictors and due to that they show a high error in predicting blast vibrations. Nowadays, artificial intelligence has been widely used in blast engineering. Thus, three artificial intelligence approaches, namely Gaussian process regression (GPR), extreme learning machine (ELM) and backpropagation neural network (BPNN) were used in this study to estimate ground vibration caused by blasting in Shree Cement Ras Limestone Mine in India. To achieve that aim, 101 blasting datasets with powder factor, average depth, distance, spacing, burden, charge weight, and stemming length as input parameters were collected from the mine site. For comparison purposes, a simple multivariate regression analysis (MVRA) model as well as, a nonparametric regression-based technique known as multivariate adaptive regression splines (MARS) was also constructed using the same datasets. This study serves as a foundational study for the comparison of GPR, BPNN, ELM, MARS and MVRA to ascertain their respective predictive performances. Eighty-one (81) datasets representing 80% of the total blasting datasets were used to construct and train the various predictive models while 20 data samples (20%) were utilized for evaluating the predictive capabilities of the developed predictive models. Using the testing datasets, major indicators of performance, namely mean squared error (MSE), variance accounted for (VAF), correlation coefficient (R) and coefficient of determination (R2) were compared as statistical evaluators of model performance. This study revealed that the GPR model exhibited superior predictive capability in comparison to the MARS, BPNN, ELM and MVRA. The GPR model showed the highest VAF, R and R2 values of 99.1728%, 0.9985 and 0.9971 respectively and the lowest MSE of 0.0903. As a result, the blast engineer can employ GPR as an effective and appropriate method for forecasting blast-induced ground vibration. © 2022 by the authors.
- «
- ‹
- 1
- ›
- »