An adaptive and flexible brain energized full body exoskeleton with IoT edge for assisting the paralyzed patients
- Jacob, Sunil, Alagirisamy, Mukil, Menon, Varun, Kumar, B. Manoj, Balasubramanian, Venki
- Authors: Jacob, Sunil , Alagirisamy, Mukil , Menon, Varun , Kumar, B. Manoj , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 100721-100731
- Full Text:
- Reviewed:
- Description: The paralyzed population is increasing worldwide due to stroke, spinal code injury, post-polio, and other related diseases. Different assistive technologies are used to improve the physical and mental health of the affected patients. Exoskeletons have emerged as one of the most promising technology to provide movement and rehabilitation for the paralyzed. But exoskeletons are limited by the constraints of weight, flexibility, and adaptability. To resolve these issues, we propose an adaptive and flexible Brain Energized Full Body Exoskeleton (BFBE) for assisting the paralyzed people. This paper describes the design, control, and testing of BFBE with 15 degrees of freedom (DoF) for assisting the users in their daily activities. The flexibility is incorporated into the system by a modular design approach. The brain signals captured by the Electroencephalogram (EEG) sensors are used for controlling the movements of BFBE. The processing happens at the edge, reducing delay in decision making and the system is further integrated with an IoT module that helps to send an alert message to multiple caregivers in case of an emergency. The potential energy harvesting is used in the system to solve the power issues related to the exoskeleton. The stability in the gait cycle is ensured by using adaptive sensory feedback. The system validation is done by using six natural movements on ten different paralyzed persons. The system recognizes human intensions with an accuracy of 85%. The result shows that BFBE can be an efficient method for providing assistance and rehabilitation for paralyzed patients. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramanian” is provided in this record**
- Authors: Jacob, Sunil , Alagirisamy, Mukil , Menon, Varun , Kumar, B. Manoj , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 100721-100731
- Full Text:
- Reviewed:
- Description: The paralyzed population is increasing worldwide due to stroke, spinal code injury, post-polio, and other related diseases. Different assistive technologies are used to improve the physical and mental health of the affected patients. Exoskeletons have emerged as one of the most promising technology to provide movement and rehabilitation for the paralyzed. But exoskeletons are limited by the constraints of weight, flexibility, and adaptability. To resolve these issues, we propose an adaptive and flexible Brain Energized Full Body Exoskeleton (BFBE) for assisting the paralyzed people. This paper describes the design, control, and testing of BFBE with 15 degrees of freedom (DoF) for assisting the users in their daily activities. The flexibility is incorporated into the system by a modular design approach. The brain signals captured by the Electroencephalogram (EEG) sensors are used for controlling the movements of BFBE. The processing happens at the edge, reducing delay in decision making and the system is further integrated with an IoT module that helps to send an alert message to multiple caregivers in case of an emergency. The potential energy harvesting is used in the system to solve the power issues related to the exoskeleton. The stability in the gait cycle is ensured by using adaptive sensory feedback. The system validation is done by using six natural movements on ten different paralyzed persons. The system recognizes human intensions with an accuracy of 85%. The result shows that BFBE can be an efficient method for providing assistance and rehabilitation for paralyzed patients. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramanian” is provided in this record**
IoT-powered deep learning brain network for assisting quadriplegic people
- Vinoj, P., Jacob, Sunil, Menon, Varun, Balasubramanian, Venki, Piran, Md Jalil
- Authors: Vinoj, P. , Jacob, Sunil , Menon, Varun , Balasubramanian, Venki , Piran, Md Jalil
- Date: 2021
- Type: Text , Journal article
- Relation: Computers and Electrical Engineering Vol. 92, no. (2021), p.
- Full Text: false
- Reviewed:
- Description: Brain-Computer Interface (BCI) systems have recently emerged as a prominent technology for assisting paralyzed people. Recovery from paralysis in most patients using the existing BCI-based assistive devices is hindered due to the lack of training and proper supervision. The system's continuous usage results in mental fatigue, owing to a higher user concentration required to execute the mental commands. Moreover, the false-positive rate and lack of constant control of the BCI systems result in user frustration. The proposed framework integrates BCI with a deep learning network in an efficient manner to reduce mental fatigue and frustration. The Deep learning Brain Network (DBN) recognizes the patient's intention for upper limb movement by a deep learning model based on the features extracted during training. DBN correlates and maps the different Electroencephalogram (EEG) patterns of healthy subjects with the identified pattern's upper limb movement. The stroke-affected muscles of the paralyzed are then activated using the obtained superior pattern. The implemented DBN consisting of four healthy subjects and a quadriplegic patient achieved 94% accuracy for various patient movement intentions. The results show that DBN is an excellent tool for providing rehabilitation, and it delivers sustained assistance, even in the absence of caregivers. © 2021
AI and IoT-Enabled smart exoskeleton system for rehabilitation of paralyzed people in connected communities
- Jacob, Sunil, Alagirisamy, Mukil, Xi, Chen, Balasubramanian, Venki, Srinivasan, Ram
- Authors: Jacob, Sunil , Alagirisamy, Mukil , Xi, Chen , Balasubramanian, Venki , Srinivasan, Ram
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Access Vol. 9, no. (2021), p. 80340-80350
- Full Text:
- Reviewed:
- Description: In recent years, the number of cases of spinal cord injuries, stroke and other nervous impairments have led to an increase in the number of paralyzed patients worldwide. Rehabilitation that can aid and enhance the lives of such patients is the need of the hour. Exoskeletons have been found as one of the popular means of rehabilitation. The existing exoskeletons use techniques that impose limitations on adaptability, instant response and continuous control. Also most of them are expensive, bulky, and requires high level of training. To overcome all the above limitations, this paper introduces an Artificial Intelligence (AI) powered Smart and light weight Exoskeleton System (AI-IoT-SES) which receives data from various sensors, classifies them intelligently and generates the desired commands via Internet of Things (IoT) for rendering rehabilitation and support with the help of caretakers for paralyzed patients in smart and connected communities. In the proposed system, the signals collected from the exoskeleton sensors are processed using AI-assisted navigation module, and helps the caretakers in guiding, communicating and controlling the movements of the exoskeleton integrated to the patients. The navigation module uses AI and IoT enabled Simultaneous Localization and Mapping (SLAM). The casualties of a paralyzed person are reduced by commissioning the IoT platform to exchange data from the intelligent sensors with the remote location of the caretaker to monitor the real time movement and navigation of the exoskeleton. The automated exoskeleton detects and take decisions on navigation thereby improving the life conditions of such patients. The experimental results simulated using MATLAB shows that the proposed system is the ideal method for rendering rehabilitation and support for paralyzed patients in smart communities. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramanian” is provided in this record**
- Authors: Jacob, Sunil , Alagirisamy, Mukil , Xi, Chen , Balasubramanian, Venki , Srinivasan, Ram
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Access Vol. 9, no. (2021), p. 80340-80350
- Full Text:
- Reviewed:
- Description: In recent years, the number of cases of spinal cord injuries, stroke and other nervous impairments have led to an increase in the number of paralyzed patients worldwide. Rehabilitation that can aid and enhance the lives of such patients is the need of the hour. Exoskeletons have been found as one of the popular means of rehabilitation. The existing exoskeletons use techniques that impose limitations on adaptability, instant response and continuous control. Also most of them are expensive, bulky, and requires high level of training. To overcome all the above limitations, this paper introduces an Artificial Intelligence (AI) powered Smart and light weight Exoskeleton System (AI-IoT-SES) which receives data from various sensors, classifies them intelligently and generates the desired commands via Internet of Things (IoT) for rendering rehabilitation and support with the help of caretakers for paralyzed patients in smart and connected communities. In the proposed system, the signals collected from the exoskeleton sensors are processed using AI-assisted navigation module, and helps the caretakers in guiding, communicating and controlling the movements of the exoskeleton integrated to the patients. The navigation module uses AI and IoT enabled Simultaneous Localization and Mapping (SLAM). The casualties of a paralyzed person are reduced by commissioning the IoT platform to exchange data from the intelligent sensors with the remote location of the caretaker to monitor the real time movement and navigation of the exoskeleton. The automated exoskeleton detects and take decisions on navigation thereby improving the life conditions of such patients. The experimental results simulated using MATLAB shows that the proposed system is the ideal method for rendering rehabilitation and support for paralyzed patients in smart communities. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramanian” is provided in this record**
- «
- ‹
- 1
- ›
- »