Long-term analysis of soil water regime and nitrate dynamics at agricultural experimental site : field-scale monitoring and numerical modeling using HYDRUS-1D
- Krevh, Vedran, Filipović, Lana, Petošić, Dragutin, Mustać, Ivica, Bogunović, Igor, Butorac, Jaminka, Kisić, Ivica, Defterdarović, Jasmina, Nakić, Zoran, Kovač, Zoran, Pereira, Paulo, He, Hailong, Chen, Rui, Toor, Gurpal, Versini, Antoine, Baumgartl, Thomas, Filipović, Vilim
- Authors: Krevh, Vedran , Filipović, Lana , Petošić, Dragutin , Mustać, Ivica , Bogunović, Igor , Butorac, Jaminka , Kisić, Ivica , Defterdarović, Jasmina , Nakić, Zoran , Kovač, Zoran , Pereira, Paulo , He, Hailong , Chen, Rui , Toor, Gurpal , Versini, Antoine , Baumgartl, Thomas , Filipović, Vilim
- Date: 2023
- Type: Text , Journal article
- Relation: Agricultural Water Management Vol. 275, no. (2023), p.
- Full Text:
- Reviewed:
- Description: Intensive agricultural practices increase agrochemical pollution, particularly nitrogen (N) based fertilizers, which present an environmental risk. This study aims to evaluate long-term (2009–2020) data on soil water regime and nitrate dynamics at an agricultural experimental site on fine-textured soils and to better understand the implications of N management in relation to groundwater pollution. The field site is located in the Biđ field (eastern Croatia), in the proximity of the Sava river. Zero-tension lysimeters were installed at six selected locations. Lysimeters were used to monitor the water regime, i.e., outflows in which nitrate concentration was measured, while additional soil-water samples were collected via 4 and 15-meter-deep monitoring wells. Soil hydraulic parameters were estimated by combining the laboratory measurements, and estimation in RETC software. Water regime and nitrate leaching in lysimeters were simulated using HYDRUS-1D for each year to allow crop rotation and to evaluate their effects individually. The HYDRUS-1D model successfully reproduced lysimeter outflows and nitrate dynamics, which was confirmed with high R2 values (water: 93% above 0.7, and nitrate: 73% above 0.7) indicating the good performance of the model simulating nitrification chain reactions. Principal component analysis (PCA) was performed to identify the relationships among all soil properties and environmental characteristics. The results showed the complex interaction of soil hydraulic properties, precipitation patterns, plant uptake, and N application. All locations have a decreasing trend of nitrate leaching over the investigation period. Most of the lysimeter outflows and elevated nitrate concentrations were connected to the wet period of the year when the soil was saturated, and evapotranspiration was low. The results of this study show that it is important to optimize N fertilizer applications for each particular environmental condition to reduce nitrate loss. The study indicates the importance of long-term field studies, key for agro-hydrological modeling and the improvement of agricultural practices. © 2022 The Authors
- Authors: Krevh, Vedran , Filipović, Lana , Petošić, Dragutin , Mustać, Ivica , Bogunović, Igor , Butorac, Jaminka , Kisić, Ivica , Defterdarović, Jasmina , Nakić, Zoran , Kovač, Zoran , Pereira, Paulo , He, Hailong , Chen, Rui , Toor, Gurpal , Versini, Antoine , Baumgartl, Thomas , Filipović, Vilim
- Date: 2023
- Type: Text , Journal article
- Relation: Agricultural Water Management Vol. 275, no. (2023), p.
- Full Text:
- Reviewed:
- Description: Intensive agricultural practices increase agrochemical pollution, particularly nitrogen (N) based fertilizers, which present an environmental risk. This study aims to evaluate long-term (2009–2020) data on soil water regime and nitrate dynamics at an agricultural experimental site on fine-textured soils and to better understand the implications of N management in relation to groundwater pollution. The field site is located in the Biđ field (eastern Croatia), in the proximity of the Sava river. Zero-tension lysimeters were installed at six selected locations. Lysimeters were used to monitor the water regime, i.e., outflows in which nitrate concentration was measured, while additional soil-water samples were collected via 4 and 15-meter-deep monitoring wells. Soil hydraulic parameters were estimated by combining the laboratory measurements, and estimation in RETC software. Water regime and nitrate leaching in lysimeters were simulated using HYDRUS-1D for each year to allow crop rotation and to evaluate their effects individually. The HYDRUS-1D model successfully reproduced lysimeter outflows and nitrate dynamics, which was confirmed with high R2 values (water: 93% above 0.7, and nitrate: 73% above 0.7) indicating the good performance of the model simulating nitrification chain reactions. Principal component analysis (PCA) was performed to identify the relationships among all soil properties and environmental characteristics. The results showed the complex interaction of soil hydraulic properties, precipitation patterns, plant uptake, and N application. All locations have a decreasing trend of nitrate leaching over the investigation period. Most of the lysimeter outflows and elevated nitrate concentrations were connected to the wet period of the year when the soil was saturated, and evapotranspiration was low. The results of this study show that it is important to optimize N fertilizer applications for each particular environmental condition to reduce nitrate loss. The study indicates the importance of long-term field studies, key for agro-hydrological modeling and the improvement of agricultural practices. © 2022 The Authors
Applications of Computed Tomography (CT) in environmental soil and plant sciences
- Zhang, Huan, He, Hailong, Gao, Yanjun, Mady, Ahmed, Filipović, Vilim, Dyck, Miles, Lv, Jialong, Liu, Yang
- Authors: Zhang, Huan , He, Hailong , Gao, Yanjun , Mady, Ahmed , Filipović, Vilim , Dyck, Miles , Lv, Jialong , Liu, Yang
- Date: 2023
- Type: Text , Journal article , Review
- Relation: Soil and Tillage Research Vol. 226, no. (2023), p.
- Full Text: false
- Reviewed:
- Description: Computed tomography (CT) in combination with advanced image processing can be used to non-invasively and non-destructively visualize complex interiors of living and non-living media in 2 and 3-dimensional space. In addition to medical applications, CT has also been widely used in soil and plant science for visual and quantitative descriptions of physical, chemical, and biological properties and processes. The technique has been used successfully on numerous applications. However, with a rapidly evolving CT technologies and expanding applications, a renewed review is desirable. Only a few attempts have been made to collate and review examples of CT applications involving the integrated field of soil and plant research in recent years. Therefore, the objectives of this work were to: (1) briefly introduce the basic principles of CT and image processing; (2) identify the research status and hot spots of CT using bibliometric analysis based on Web of Science literature over the past three decades; (3) provide an overall review of CT applications in soil science for measuring soil properties (e.g., porous soil structure, soil components, soil biology, heat transfer, water flow, and solute transport); and (4) give an overview of applications of CT in plant science to detect morphological structures, plant material properties, and root-soil interaction. Moreover, the limitations of CT and image processing are discussed and future perspectives are given. © 2022 Elsevier B.V.
- Filipović, Vilim, Defterdarović, Jasmina, Krevh, Vedran, Filipović, Lana, Ondrašek, Gabrijel, Kranjčec, Filip, Magdić, Ivan, Rubinić, Vedran, Stipičević, Sanja, Mustać, Ivan, Bubalo Kovačić, Marina, He, Hailong, Haghverdi, Amir, Gerke, Horst
- Authors: Filipović, Vilim , Defterdarović, Jasmina , Krevh, Vedran , Filipović, Lana , Ondrašek, Gabrijel , Kranjčec, Filip , Magdić, Ivan , Rubinić, Vedran , Stipičević, Sanja , Mustać, Ivan , Bubalo Kovačić, Marina , He, Hailong , Haghverdi, Amir , Gerke, Horst
- Date: 2021
- Type: Text , Journal article
- Relation: Agronomy (Basel) Vol. 12, no. 1 (2021), p. 33
- Full Text: false
- Reviewed:
- Description: Erosion has been reported as one of the top degradation processes that negatively affect agricultural soils. The study objective was to identify hydropedological factors controlling soil water dynamics in erosion-affected hillslope vineyard soils. The hydropedological study was conducted at identically-managed Jastrebarsko (location I), and Jazbina (II) and (III) sites with Stagnosol soils. Soil Hydraulic Properties (SHP) were estimated on intact soil cores using Evaporation and WP4C methodssoil hydraulic functions were fitted using HYPROP-FIT software. For Apg and Bg/Btg horizons, uni- and bimodal soil hydraulic models could be well fitted to data although, the bimodal model performed better in particular cases where data indicated non-uniform pore size distribution. With these SHP estimations, a one-year (2020) water flow scenario was simulated using HYDRUS-1D to compare water balance results obtained with uni- and bimodal hydraulic functions. Simulation results revealed relatively similar flux distribution at each hillslope position between the water balance components infiltration, surface runoff, and drainage. However, at the bottom profile at Jastrebarsko, bimodality of the hydraulic functions led to increased drainage. Soil water storage was reduced, and the vertical movement increased due to modified soil water retention curve shapes. Adequate parameterization of SHP is required to capture the hydropedological response of heterogenous erosion-affected soil systems.
Using dye and bromide tracers to identify preferential water flow in agricultural hillslope soil under controlled conditions
- Defterdarović, Jasmina, Krevh, Vedran, Filipović, Lana, Kovač, Zoran, Phogat, Vinod, He, Hailong, Baumgartl, Thomas, Filipović, Vilim
- Authors: Defterdarović, Jasmina , Krevh, Vedran , Filipović, Lana , Kovač, Zoran , Phogat, Vinod , He, Hailong , Baumgartl, Thomas , Filipović, Vilim
- Date: 2023
- Type: Text , Journal article
- Relation: Water (Switzerland) Vol. 15, no. 12 (2023), p.
- Full Text:
- Reviewed:
- Description: Processes in hillslope soils present a particular challenge for agricultural production and soil management due to their hydropedological specifics and high soil erosion risk. Soil heterogeneities can cause preferential and/or lateral flow on the entire hillslope resulting in the off-site movement of water, fertilizers and chemicals used in crop production. A study was conducted under controlled conditions in a laboratory with undisturbed soil cores (250 cm3), which were used to estimate the soil hydraulic properties (SHP) using HYPROP and WP4C devices, while undisturbed soil columns (diameter = 16 cm, length = 25 cm) were used for the evaluation of preferential flow pathways using potassium bromide and Brilliant Blue. Samples were excavated in triplicate from the hilltop, backslope and footslope regions within the inter-rows of a vineyard from a critical zone observatory, SUPREHILL, in Croatia in Dystric Luvic Stagnosol. The aim of this study was to determine if the erosion-affected hillslope position affected the physical, chemical and hydraulic properties of soil and to identify water flow and possible preferential flow using dye and bromide tracers. The results of the sensor measurements and estimated SHPs were in agreement, showing a faster leaching of the irrigated rainwater in the footslope column. The tracer experiments showed variability even in the columns taken from the same position on the hillslope, which can be linked to plant roots and soil fauna activity. Altogether, the results showed a deeper loose layer at the footslope as a consequence of the soil erosion, which then resulted in higher hydraulic conductivity and the leached mass of the bromide due to better soil structure and pore connectivity. Thus, due to significant differences in the leached mass of bromide, this research should be later expanded in field experiments to reveal the impact of surface runoff, subsurface preferential and lateral flow on a larger scale. © 2023 by the authors.
- Authors: Defterdarović, Jasmina , Krevh, Vedran , Filipović, Lana , Kovač, Zoran , Phogat, Vinod , He, Hailong , Baumgartl, Thomas , Filipović, Vilim
- Date: 2023
- Type: Text , Journal article
- Relation: Water (Switzerland) Vol. 15, no. 12 (2023), p.
- Full Text:
- Reviewed:
- Description: Processes in hillslope soils present a particular challenge for agricultural production and soil management due to their hydropedological specifics and high soil erosion risk. Soil heterogeneities can cause preferential and/or lateral flow on the entire hillslope resulting in the off-site movement of water, fertilizers and chemicals used in crop production. A study was conducted under controlled conditions in a laboratory with undisturbed soil cores (250 cm3), which were used to estimate the soil hydraulic properties (SHP) using HYPROP and WP4C devices, while undisturbed soil columns (diameter = 16 cm, length = 25 cm) were used for the evaluation of preferential flow pathways using potassium bromide and Brilliant Blue. Samples were excavated in triplicate from the hilltop, backslope and footslope regions within the inter-rows of a vineyard from a critical zone observatory, SUPREHILL, in Croatia in Dystric Luvic Stagnosol. The aim of this study was to determine if the erosion-affected hillslope position affected the physical, chemical and hydraulic properties of soil and to identify water flow and possible preferential flow using dye and bromide tracers. The results of the sensor measurements and estimated SHPs were in agreement, showing a faster leaching of the irrigated rainwater in the footslope column. The tracer experiments showed variability even in the columns taken from the same position on the hillslope, which can be linked to plant roots and soil fauna activity. Altogether, the results showed a deeper loose layer at the footslope as a consequence of the soil erosion, which then resulted in higher hydraulic conductivity and the leached mass of the bromide due to better soil structure and pore connectivity. Thus, due to significant differences in the leached mass of bromide, this research should be later expanded in field experiments to reveal the impact of surface runoff, subsurface preferential and lateral flow on a larger scale. © 2023 by the authors.
Hyperaccumulators for potentially toxic elements: A scientometric analysis
- Zhang, Dongming, Dyck, Miles, Filipović, Lana, Filipović, Vilim, Lv, Jialong, He, Hailong
- Authors: Zhang, Dongming , Dyck, Miles , Filipović, Lana , Filipović, Vilim , Lv, Jialong , He, Hailong
- Date: 2021
- Type: Text , Journal article
- Relation: Agronomy (Basel) Vol. 11, no. 9 (2021), p. 1729
- Full Text:
- Reviewed:
- Description: Phytoremediation is an effective and low-cost method for the remediation of soil contaminated by potentially toxic elements (metals and metalloids) with hyperaccumulating plants. This study analyzed hyperaccumulator publications using data from the Web of Science Core Collection (WoSCC) (1992–2020). We explored the research status on this topic by creating a series of scientific maps using VOSviewer, HistCite Pro, and CiteSpace. The results showed that the total number of publications in this field shows an upward trend. Dr. Xiaoe Yang is the most productive researcher on hyperaccumulators and has the broadest international collaboration network. The Chinese Academy of Sciences (China), Zhejiang University (China), and the University of Florida (USA) are the top three most productive institutions in the field. China, the USA, and India are the top three most productive countries. The most widely used journals were the International Journal of Phytoremediation, Environmental Science and Pollution Research, and Chemosphere. Co-occurrence and citation analysis were used to identify the most influential publications in this field. In addition, possible knowledge gaps and perspectives for future studies are also presented.
- Authors: Zhang, Dongming , Dyck, Miles , Filipović, Lana , Filipović, Vilim , Lv, Jialong , He, Hailong
- Date: 2021
- Type: Text , Journal article
- Relation: Agronomy (Basel) Vol. 11, no. 9 (2021), p. 1729
- Full Text:
- Reviewed:
- Description: Phytoremediation is an effective and low-cost method for the remediation of soil contaminated by potentially toxic elements (metals and metalloids) with hyperaccumulating plants. This study analyzed hyperaccumulator publications using data from the Web of Science Core Collection (WoSCC) (1992–2020). We explored the research status on this topic by creating a series of scientific maps using VOSviewer, HistCite Pro, and CiteSpace. The results showed that the total number of publications in this field shows an upward trend. Dr. Xiaoe Yang is the most productive researcher on hyperaccumulators and has the broadest international collaboration network. The Chinese Academy of Sciences (China), Zhejiang University (China), and the University of Florida (USA) are the top three most productive institutions in the field. China, the USA, and India are the top three most productive countries. The most widely used journals were the International Journal of Phytoremediation, Environmental Science and Pollution Research, and Chemosphere. Co-occurrence and citation analysis were used to identify the most influential publications in this field. In addition, possible knowledge gaps and perspectives for future studies are also presented.
- He, Hailong, Zou, Wenxiu, Jones, Scott, Robinson, David, Horton, Robert, Dyck, Miles, Filipović, Vilim, Noborio, Kosuke, Bristow, Keith, Gong, Yuan, Sheng, Wenyi, Wu, Qingbai, Feng, Hao, Liu, Yang
- Authors: He, Hailong , Zou, Wenxiu , Jones, Scott , Robinson, David , Horton, Robert , Dyck, Miles , Filipović, Vilim , Noborio, Kosuke , Bristow, Keith , Gong, Yuan , Sheng, Wenyi , Wu, Qingbai , Feng, Hao , Liu, Yang
- Date: 2023
- Type: Text , Book chapter
- Relation: Advances in Agronomy Chapter 4 p. 169-219
- Full Text: false
- Reviewed:
- Description: Time domain reflectometry (TDR) is the most widely used non-destructive, easily automated method to determine water content of soils and other porous media. However, it should be noted that two key steps are required for TDR applications: (1) Obtain and analyze TDR waveforms using travel-time analysis to determine apparent permittivity; (2) determine a new- or apply an existing relationship between the derived apparent permittivity and the volumetric water content of the porous medium of interest. Activities associated with the first key step were presented in a previous review of TDR applications in porous media including soils, plants, snow, food, and concrete (He et al., 2021, Advances in Agronomy, 83–155). This review focuses on the second step required by TDR applications to determine soil water content in both field and laboratory environments. Numerous mathematical models have been developed to enhance our ability to better estimate water content with TDR-measured apparent dielectric permittivity. When applied judiciously, TDR measurements can help to better understand processes such as coupled transport of water, solutes, and heat, measure the soil water balance and improve the efficiency of irrigation scheduling. However, there are important differences in the formulation, applicability, and accuracy of these models, and no systematic review has been previously undertaken. The objectives of this study are to (1) review and synthesize models relating TDR-measured apparent permittivity to water content in porous media, and (2) analyze the relationships between models. This review examines a total of 157 models that are categorized into 123 empirical models, 11 semi-empirical models, and 23 physical models, based on their development, underlying theories, phase configurations, applications to mineral or organic soils, and unfrozen or frozen conditions. Model limitations and perspectives are discussed and several unresolved questions are presented to highlight the need for further research in this rapidly expanding field. © 2023 Elsevier Inc.
Determination of soil hydraulic parameters and evaluation of water dynamics and nitrate leaching in the unsaturated layered zone: A modeling case study in Central Croatia
- Defterdarović, Jasmina, Filipović, Lana, Kranjčec, Filip, Ondrašek, Gabrijel, Kikić, Diana, Novosel, Alen, Mustać, Ivan, Krevh, Vedran, Magdić, Ivan, Rubinić, Vedran, Bogunović, Igor, Dugan, Ivan, Čopec, Krešimir, He, Hailong, Filipović, Vilim
- Authors: Defterdarović, Jasmina , Filipović, Lana , Kranjčec, Filip , Ondrašek, Gabrijel , Kikić, Diana , Novosel, Alen , Mustać, Ivan , Krevh, Vedran , Magdić, Ivan , Rubinić, Vedran , Bogunović, Igor , Dugan, Ivan , Čopec, Krešimir , He, Hailong , Filipović, Vilim
- Date: 2021
- Type: Journal article
- Relation: Sustainability (Basel, Switzerland) Vol. 13, no. 12 (2021), p. 6688
- Full Text:
- Reviewed:
- Description: Nitrate leaching through soil layers to groundwater may cause significant degradation of natural resources. The aims of this study were: (i) to estimate soil hydraulic properties (SHPs) of the similar soil type with same management on various locations (ii) to determine annual water dynamics and (iii) to estimate the impact of subsoil horizon properties on nitrate leaching. The final goal was to compare the influence of different SHPs and layering on water dynamics and nitrate leaching. The study was conducted in central Croatia (Zagreb), at four locations on Calcaric Phaeozem, Calcaric Regosol, and Calcaric Fluvic Phaeozem soil types. Soil hydraulic parameters were estimated using the HYPROP system and HYPROP-FIT software. Water dynamics and nitrate leaching were evaluated using HYDRUS 2D/3D during a period of 365 days. The amount of water in the soil under saturated conditions varied from 0.422 to 0.535 cm3 cm−3 while the hydraulic conductivity varied from 3 cm day−1 to 990.9 cm day−1. Even though all locations have the same land use and climatic conditions with similar physical properties, hydraulic parameters varied substantially. The amount and velocity of transported nitrate (HYDRUS 2D/3D) were affected by reduced hydraulic conductivity of the subsoil as nitrates are primarily transported via advective flux. Despite the large differences in SHPs of the topsoil layers, the deeper soil layers, having similar SHPs, imposed a buffering effect preventing faster nitrate downward transport. This contributed to a very similar distribution of nitrates through the soil profile at the end of simulation period. This case study indicated the importance of carefully selecting relevant parameters in multilayered soil systems when evaluating groundwater pollution risk.
- Authors: Defterdarović, Jasmina , Filipović, Lana , Kranjčec, Filip , Ondrašek, Gabrijel , Kikić, Diana , Novosel, Alen , Mustać, Ivan , Krevh, Vedran , Magdić, Ivan , Rubinić, Vedran , Bogunović, Igor , Dugan, Ivan , Čopec, Krešimir , He, Hailong , Filipović, Vilim
- Date: 2021
- Type: Journal article
- Relation: Sustainability (Basel, Switzerland) Vol. 13, no. 12 (2021), p. 6688
- Full Text:
- Reviewed:
- Description: Nitrate leaching through soil layers to groundwater may cause significant degradation of natural resources. The aims of this study were: (i) to estimate soil hydraulic properties (SHPs) of the similar soil type with same management on various locations (ii) to determine annual water dynamics and (iii) to estimate the impact of subsoil horizon properties on nitrate leaching. The final goal was to compare the influence of different SHPs and layering on water dynamics and nitrate leaching. The study was conducted in central Croatia (Zagreb), at four locations on Calcaric Phaeozem, Calcaric Regosol, and Calcaric Fluvic Phaeozem soil types. Soil hydraulic parameters were estimated using the HYPROP system and HYPROP-FIT software. Water dynamics and nitrate leaching were evaluated using HYDRUS 2D/3D during a period of 365 days. The amount of water in the soil under saturated conditions varied from 0.422 to 0.535 cm3 cm−3 while the hydraulic conductivity varied from 3 cm day−1 to 990.9 cm day−1. Even though all locations have the same land use and climatic conditions with similar physical properties, hydraulic parameters varied substantially. The amount and velocity of transported nitrate (HYDRUS 2D/3D) were affected by reduced hydraulic conductivity of the subsoil as nitrates are primarily transported via advective flux. Despite the large differences in SHPs of the topsoil layers, the deeper soil layers, having similar SHPs, imposed a buffering effect preventing faster nitrate downward transport. This contributed to a very similar distribution of nitrates through the soil profile at the end of simulation period. This case study indicated the importance of carefully selecting relevant parameters in multilayered soil systems when evaluating groundwater pollution risk.
- Krevh, Vedran, Filipović, Vilim, Filipović, Lana, Mateković, Valentina, Petošić, Dragutin, Mustać, Ivan, Ondrašek, Gabrijel, Bogunović, Igor, Kovač, Zoran, Pereira, Paulo, Sasidharan, Salini, He, Hailong, Groh, Jannis, Stumpp, Christine, Brunetti, Giuseppe
- Authors: Krevh, Vedran , Filipović, Vilim , Filipović, Lana , Mateković, Valentina , Petošić, Dragutin , Mustać, Ivan , Ondrašek, Gabrijel , Bogunović, Igor , Kovač, Zoran , Pereira, Paulo , Sasidharan, Salini , He, Hailong , Groh, Jannis , Stumpp, Christine , Brunetti, Giuseppe
- Date: 2022
- Type: Text , Journal article
- Relation: Catena Vol. 211, no. (2022), p.
- Full Text: false
- Reviewed:
- Description: This study aims to explain complex vadose zone hydrology of fine-textured (gley) agricultural soils influenced by a shallow and dynamic groundwater (GW) levels. The field site was located in the Bi
Microplastics in terrestrial ecosystems: A scientometric analysis
- He, Donghui, Bristow, Keith, Filipović, Vilim, Lv, Jialong, He, Hailong
- Authors: He, Donghui , Bristow, Keith , Filipović, Vilim , Lv, Jialong , He, Hailong
- Date: 2020
- Type: Text , Journal article
- Relation: Sustainability Vol. 12, no. 20 (2020), p. 8739
- Full Text: false
- Reviewed:
- Description: Microplastics, as an emerging contaminant, have been shown to threaten the sustainability of ecosystems, and there is also concern about human exposure, as microplastic particles tend to bioaccumulate and biomagnify through the food chain. While microplastics in marine environments have been extensively studied, research on microplastics in terrestrial ecosystems is just starting to gain momentum. In this paper, we used scientometric analysis to understand the current status of microplastic research in terrestrial systems. The global scientific literature on microplastics in terrestrial ecosystems, based on data from the Web of Science between 1986 and 2020, was explored with the VOSviewer scientometric software. Co-occurrence visualization maps and citation analysis were used to identify the relationship among keywords, authors, organizations, countries, and journals focusing on the issues of terrestrial microplastics. The results show that research on microplastics in terrestrial systems just started in the past few years but is increasing rapidly. Science of the Total Environment ranks first among the journals publishing papers on terrestrial microplastics. In addition, we also highlighted the desire to establish standards/protocols for extracting and quantifying microplastics in soils. Future studies are recommended to fill the knowledge gaps on the abundance, distribution, ecological and economic effects, and toxicity of microplastics.
Quantification of intra- vs. inter-row leaching of major plant nutrients in sloping vineyard soils
- Filipović, Lana, Krevh, Vedran, Chen, Rui, Defterdarović, Jasmina, Kovač, Zoran, Mustać, Ivan, Bogunović, Igor, He, Hailong, Baumgartl, Thomas, Gerke, Horst, Toor, Gurpal, Filipović, Vilim
- Authors: Filipović, Lana , Krevh, Vedran , Chen, Rui , Defterdarović, Jasmina , Kovač, Zoran , Mustać, Ivan , Bogunović, Igor , He, Hailong , Baumgartl, Thomas , Gerke, Horst , Toor, Gurpal , Filipović, Vilim
- Date: 2023
- Type: Text , Journal article
- Relation: Water (Switzerland) Vol. 15, no. 4 (2023), p.
- Full Text:
- Reviewed:
- Description: Nutrient leaching from agricultural soils presents an economic loss for farmers and can degrade the quality of the surrounding environment. Thus, leachates from 18 in situ wick lysimeters, installed at 40 cm soil depth at the vineyard hilltop, backslope, and footslope intra- and inter-row area (SUPREHILL Critical Zone Observatory, Croatia) were collected monthly over two years and analyzed for major plant nutrient ions. Our objectives were to quantify nutrient losses via leaching from the hilltop towards the backslope and to the footslope, and to compare leaching from vine plant rows (intra-row) with grassed areas between vine rows (inter-row). We found that the concentrations of nitrate, orthophosphate, and potassium were significantly higher in leachates collected at the footslope as compared to the hilltop and backslope only at intra- and not at inter-row positions, while ammonium was independent of the slope and row positions. The vineyard intra-row is identified as the probable spatial origin of nutrient leaching along the slope, thus confirming spatially different contributions of overall hillslope to major plant nutrients leaching. The experimental field scheme used in this study, which separately analyses vineyard intra- and inter-row, was confirmed to be an adequate approach for optimizing vineyard management practices. © 2023 by the authors.
- Authors: Filipović, Lana , Krevh, Vedran , Chen, Rui , Defterdarović, Jasmina , Kovač, Zoran , Mustać, Ivan , Bogunović, Igor , He, Hailong , Baumgartl, Thomas , Gerke, Horst , Toor, Gurpal , Filipović, Vilim
- Date: 2023
- Type: Text , Journal article
- Relation: Water (Switzerland) Vol. 15, no. 4 (2023), p.
- Full Text:
- Reviewed:
- Description: Nutrient leaching from agricultural soils presents an economic loss for farmers and can degrade the quality of the surrounding environment. Thus, leachates from 18 in situ wick lysimeters, installed at 40 cm soil depth at the vineyard hilltop, backslope, and footslope intra- and inter-row area (SUPREHILL Critical Zone Observatory, Croatia) were collected monthly over two years and analyzed for major plant nutrient ions. Our objectives were to quantify nutrient losses via leaching from the hilltop towards the backslope and to the footslope, and to compare leaching from vine plant rows (intra-row) with grassed areas between vine rows (inter-row). We found that the concentrations of nitrate, orthophosphate, and potassium were significantly higher in leachates collected at the footslope as compared to the hilltop and backslope only at intra- and not at inter-row positions, while ammonium was independent of the slope and row positions. The vineyard intra-row is identified as the probable spatial origin of nutrient leaching along the slope, thus confirming spatially different contributions of overall hillslope to major plant nutrients leaching. The experimental field scheme used in this study, which separately analyses vineyard intra- and inter-row, was confirmed to be an adequate approach for optimizing vineyard management practices. © 2023 by the authors.
Impact of hillslope agriculture on soil compaction and seasonal water dynamics in a temperate vineyard
- Defterdarovi, Filipović, Lana, Ondrašek, Gabrijel, Bogunović, Igor, Dugan, Ivan, Phogat, Vinod, He, Hailong, Rashti, Mehran, Tavakkoli, Ehsan, Baumgartl, Thomas, Baghbani, Abolfazl, McLaren, Timothy, Filipović, Vilim
- Authors: Defterdarovi , Filipović, Lana , Ondrašek, Gabrijel , Bogunović, Igor , Dugan, Ivan , Phogat, Vinod , He, Hailong , Rashti, Mehran , Tavakkoli, Ehsan , Baumgartl, Thomas , Baghbani, Abolfazl , McLaren, Timothy , Filipović, Vilim
- Date: 2024
- Type: Text , Journal article
- Relation: Land Vol. 13, no. 5 (2024), p.
- Full Text:
- Reviewed:
- Description: Major losses of agricultural production and soils are caused by erosion, which is especially pronounced on hillslopes due to specific hydrological processes and heterogeneity. Therefore, the aim of this study was to assess the impact of agricultural management on the compaction, infiltration, and seasonal water content dynamics of the hillslope. Measurements were made at the hilltop and footslope, i.e., soil water content and potential were measured using sensors, wick lysimeters were used to quantify water flux, while a mini-disk infiltrometer was used to measure the infiltration rate and calculate the unsaturated hydraulic conductivity (K_unsat). Soil texture showed differences between hillslope positions, i.e., at the hilltop after 50 cm depth, the soil is classified as silty clay loam, and from 75 cm onward, the soil is silty clay, while at the footslope, the soil is silt loam even at the deeper depths. The results show a higher K_unsat at the footslope as well as higher average water volumes collected in wick lysimeters compared to the hilltop. Average water volumes showed a statistically significant difference at p < 0.01 between the hilltop and the footslope. The soil water content and water potential sensors showed higher values at the footslope at all depths, i.e., 8.0% at 15 cm, 8.4% at 30 cm, and 27.3% at 45 cm. The results show that, even though the vineyard is located in a relatively small area, soil heterogeneity is present, affecting the water flow along the hillslope. This suggests the importance of observing water movement in the soil, especially today when facing extreme weather (e.g., short-term high-intensity rainfall events) in order to protect soil and water resources. © 2024 by the authors.
- Authors: Defterdarovi , Filipović, Lana , Ondrašek, Gabrijel , Bogunović, Igor , Dugan, Ivan , Phogat, Vinod , He, Hailong , Rashti, Mehran , Tavakkoli, Ehsan , Baumgartl, Thomas , Baghbani, Abolfazl , McLaren, Timothy , Filipović, Vilim
- Date: 2024
- Type: Text , Journal article
- Relation: Land Vol. 13, no. 5 (2024), p.
- Full Text:
- Reviewed:
- Description: Major losses of agricultural production and soils are caused by erosion, which is especially pronounced on hillslopes due to specific hydrological processes and heterogeneity. Therefore, the aim of this study was to assess the impact of agricultural management on the compaction, infiltration, and seasonal water content dynamics of the hillslope. Measurements were made at the hilltop and footslope, i.e., soil water content and potential were measured using sensors, wick lysimeters were used to quantify water flux, while a mini-disk infiltrometer was used to measure the infiltration rate and calculate the unsaturated hydraulic conductivity (K_unsat). Soil texture showed differences between hillslope positions, i.e., at the hilltop after 50 cm depth, the soil is classified as silty clay loam, and from 75 cm onward, the soil is silty clay, while at the footslope, the soil is silt loam even at the deeper depths. The results show a higher K_unsat at the footslope as well as higher average water volumes collected in wick lysimeters compared to the hilltop. Average water volumes showed a statistically significant difference at p < 0.01 between the hilltop and the footslope. The soil water content and water potential sensors showed higher values at the footslope at all depths, i.e., 8.0% at 15 cm, 8.4% at 30 cm, and 27.3% at 45 cm. The results show that, even though the vineyard is located in a relatively small area, soil heterogeneity is present, affecting the water flow along the hillslope. This suggests the importance of observing water movement in the soil, especially today when facing extreme weather (e.g., short-term high-intensity rainfall events) in order to protect soil and water resources. © 2024 by the authors.
Leached copper correlation with dissolved organic carbon in sloped vineyard soil
- Filipović, Lana, Defterdarović, Jasmina, Chen, Rui, Krevh, Vedran, Gerke, Horst, Baumgartl, Thomas, Kovač, Zoran, Ondrašek, Gabrijel, Ružičić, Stanko, He, Hailong, Dusek, Jaromir, Filipović, Vilim
- Authors: Filipović, Lana , Defterdarović, Jasmina , Chen, Rui , Krevh, Vedran , Gerke, Horst , Baumgartl, Thomas , Kovač, Zoran , Ondrašek, Gabrijel , Ružičić, Stanko , He, Hailong , Dusek, Jaromir , Filipović, Vilim
- Date: 2023
- Type: Text , Journal article
- Relation: Water (Switzerland) Vol. 15, no. 4 (2023), p.
- Full Text:
- Reviewed:
- Description: The solubility and mobility of copper (Cu) in soil is strongly influenced by the presence of dissolved organic carbon (DOC); however, the interactions between Cu and DOC are complex and not yet fully understood. In this study, Cu and DOC concentrations were measured monthly for two years in leachates from self-constructed lysimeters installed at inter- and intra-row vineyard hilltop, backslope, and footslope areas at the SUPREHILL Critical Zone Observatory, Croatia. The aim was to quantify Cu and DOC leaching from the hilltop towards the backslope and the footslope. The assumed strong relationship between Cu and DOC in the leachates was statistically analyzed and explained using chemical equilibrium software. Leachates were analyzed for pH, EC, DOC, Cu, and major ion concentrations. The highest Cu concentrations found in leachates from the intra-row footslope suggested Cu downhill transport. Although not strong, a significant positive correlation between Cu and DOC in footslope leachates confirmed the relevance of Cu complexation by DOC. Speciation confirmed that more than 99.9% of total Cu in leachates was found as a Cu-DOC complex. Data implied the role of soil water flow pathways in explaining Cu downhill transport. Critical timing for applying Cu fungicides at sloped vineyards was highlighted. © 2023 by the authors.
- Authors: Filipović, Lana , Defterdarović, Jasmina , Chen, Rui , Krevh, Vedran , Gerke, Horst , Baumgartl, Thomas , Kovač, Zoran , Ondrašek, Gabrijel , Ružičić, Stanko , He, Hailong , Dusek, Jaromir , Filipović, Vilim
- Date: 2023
- Type: Text , Journal article
- Relation: Water (Switzerland) Vol. 15, no. 4 (2023), p.
- Full Text:
- Reviewed:
- Description: The solubility and mobility of copper (Cu) in soil is strongly influenced by the presence of dissolved organic carbon (DOC); however, the interactions between Cu and DOC are complex and not yet fully understood. In this study, Cu and DOC concentrations were measured monthly for two years in leachates from self-constructed lysimeters installed at inter- and intra-row vineyard hilltop, backslope, and footslope areas at the SUPREHILL Critical Zone Observatory, Croatia. The aim was to quantify Cu and DOC leaching from the hilltop towards the backslope and the footslope. The assumed strong relationship between Cu and DOC in the leachates was statistically analyzed and explained using chemical equilibrium software. Leachates were analyzed for pH, EC, DOC, Cu, and major ion concentrations. The highest Cu concentrations found in leachates from the intra-row footslope suggested Cu downhill transport. Although not strong, a significant positive correlation between Cu and DOC in footslope leachates confirmed the relevance of Cu complexation by DOC. Speciation confirmed that more than 99.9% of total Cu in leachates was found as a Cu-DOC complex. Data implied the role of soil water flow pathways in explaining Cu downhill transport. Critical timing for applying Cu fungicides at sloped vineyards was highlighted. © 2023 by the authors.
- «
- ‹
- 1
- ›
- »