6G wireless systems : a vision, architectural elements, and future directions
- Khan, Latif, Yaqoob, Ibrar, Imran, Muhammad, Han, Zhu, Hong, Choong
- Authors: Khan, Latif , Yaqoob, Ibrar , Imran, Muhammad , Han, Zhu , Hong, Choong
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 147029-147044
- Full Text:
- Reviewed:
- Description: Internet of everything (IoE)-based smart services are expected to gain immense popularity in the future, which raises the need for next-generation wireless networks. Although fifth-generation (5G) networks can support various IoE services, they might not be able to completely fulfill the requirements of novel applications. Sixth-generation (6G) wireless systems are envisioned to overcome 5G network limitations. In this article, we explore recent advances made toward enabling 6G systems. We devise a taxonomy based on key enabling technologies, use cases, emerging machine learning schemes, communication technologies, networking technologies, and computing technologies. Furthermore, we identify and discuss open research challenges, such as artificial-intelligence-based adaptive transceivers, intelligent wireless energy harvesting, decentralized and secure business models, intelligent cell-less architecture, and distributed security models. We propose practical guidelines including deep Q-learning and federated learning-based transceivers, blockchain-based secure business models, homomorphic encryption, and distributed-ledger-based authentication schemes to cope with these challenges. Finally, we outline and recommend several future directions. © 2013 IEEE.
- Authors: Khan, Latif , Yaqoob, Ibrar , Imran, Muhammad , Han, Zhu , Hong, Choong
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 147029-147044
- Full Text:
- Reviewed:
- Description: Internet of everything (IoE)-based smart services are expected to gain immense popularity in the future, which raises the need for next-generation wireless networks. Although fifth-generation (5G) networks can support various IoE services, they might not be able to completely fulfill the requirements of novel applications. Sixth-generation (6G) wireless systems are envisioned to overcome 5G network limitations. In this article, we explore recent advances made toward enabling 6G systems. We devise a taxonomy based on key enabling technologies, use cases, emerging machine learning schemes, communication technologies, networking technologies, and computing technologies. Furthermore, we identify and discuss open research challenges, such as artificial-intelligence-based adaptive transceivers, intelligent wireless energy harvesting, decentralized and secure business models, intelligent cell-less architecture, and distributed security models. We propose practical guidelines including deep Q-learning and federated learning-based transceivers, blockchain-based secure business models, homomorphic encryption, and distributed-ledger-based authentication schemes to cope with these challenges. Finally, we outline and recommend several future directions. © 2013 IEEE.
Resource optimized federated learning-enabled cognitive internet of things for smart industries
- Khan, Latif, Alsenwi, Madyan, Yaqoob, Ibrar, Imran, Muhammad, Han, Zhu, Hong, Choong
- Authors: Khan, Latif , Alsenwi, Madyan , Yaqoob, Ibrar , Imran, Muhammad , Han, Zhu , Hong, Choong
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 168854-168864
- Full Text:
- Reviewed:
- Description: Leveraging the cognitive Internet of things (C-IoT), emerging computing technologies, and machine learning schemes for industries can assist in streamlining manufacturing processes, revolutionizing operational analytics, and maintaining factory efficiency. However, further adoption of centralized machine learning in industries seems to be restricted due to data privacy issues. Federated learning has the potential to bring about predictive features in industrial systems without leaking private information. However, its implementation involves key challenges including resource optimization, robustness, and security. In this article, we propose a novel dispersed federated learning (DFL) framework to provide resource optimization, whereby distributed fashion of learning offers robustness. We formulate an integer linear optimization problem to minimize the overall federated learning cost for the DFL framework. To solve the formulated problem, first, we decompose it into two sub-problems: association and resource allocation problem. Second, we relax the association and resource allocation sub-problems to make them convex optimization problems. Later, we use the rounding technique to obtain binary association and resource allocation variables. Our proposed algorithm works in an iterative manner by fixing one problem variable (for example, association) and compute the other (for example, resource allocation). The iterative algorithm continues until convergence of the formulated cost optimization problem. Furthermore, we compare the proposed DFL with two schemes; namely, random resource allocation and random association. Numerical results show the superiority of the proposed DFL scheme. © 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.
- Authors: Khan, Latif , Alsenwi, Madyan , Yaqoob, Ibrar , Imran, Muhammad , Han, Zhu , Hong, Choong
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 168854-168864
- Full Text:
- Reviewed:
- Description: Leveraging the cognitive Internet of things (C-IoT), emerging computing technologies, and machine learning schemes for industries can assist in streamlining manufacturing processes, revolutionizing operational analytics, and maintaining factory efficiency. However, further adoption of centralized machine learning in industries seems to be restricted due to data privacy issues. Federated learning has the potential to bring about predictive features in industrial systems without leaking private information. However, its implementation involves key challenges including resource optimization, robustness, and security. In this article, we propose a novel dispersed federated learning (DFL) framework to provide resource optimization, whereby distributed fashion of learning offers robustness. We formulate an integer linear optimization problem to minimize the overall federated learning cost for the DFL framework. To solve the formulated problem, first, we decompose it into two sub-problems: association and resource allocation problem. Second, we relax the association and resource allocation sub-problems to make them convex optimization problems. Later, we use the rounding technique to obtain binary association and resource allocation variables. Our proposed algorithm works in an iterative manner by fixing one problem variable (for example, association) and compute the other (for example, resource allocation). The iterative algorithm continues until convergence of the formulated cost optimization problem. Furthermore, we compare the proposed DFL with two schemes; namely, random resource allocation and random association. Numerical results show the superiority of the proposed DFL scheme. © 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.
- «
- ‹
- 1
- ›
- »