The use and utility of surrogates in biodiversity monitoring programmes
- Sato, Chloe, Westgate, Martin, Barton, Philip, Foster, Claire, O'Loughlin, Luke
- Authors: Sato, Chloe , Westgate, Martin , Barton, Philip , Foster, Claire , O'Loughlin, Luke
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Applied Ecology Vol. 56, no. 6 (2019), p. 1304-1310
- Full Text:
- Reviewed:
- Description: **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- Authors: Sato, Chloe , Westgate, Martin , Barton, Philip , Foster, Claire , O'Loughlin, Luke
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Applied Ecology Vol. 56, no. 6 (2019), p. 1304-1310
- Full Text:
- Reviewed:
- Description: **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
How practitioners integrate decision triggers with existing metrics in conservation monitoring
- Foster, Claire, O'Loughlin, Luke, Sato, Chloe, Westgate, Martin, Barton, Philip
- Authors: Foster, Claire , O'Loughlin, Luke , Sato, Chloe , Westgate, Martin , Barton, Philip
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Environmental Management Vol. 230, no. (2019), p. 94-101
- Full Text:
- Reviewed:
- Description: Decision triggers are defined thresholds in the status of monitored variables that indicate when to undertake management, and avoid undesirable ecosystem change. Decision triggers are frequently recommended to conservation practitioners as a tool to facilitate evidence-based management practices, but there has been limited attention paid to how practitioners are integrating decision triggers into existing monitoring programs. We sought to understand whether conservation practitioners’ use of decision triggers was influenced by the type of variables in their monitoring programs. We investigated this question using a practitioner-focused workshop involving a structured discussion and review of eight monitoring programs. Among our case studies, direct measures of biodiversity (e.g. native species) were more commonly monitored, but less likely to be linked to decision triggers (10% with triggers) than measures being used as surrogates (54% with triggers) for program objectives. This was because decision triggers were associated with management of threatening processes, which were often monitored as a surrogate for a biodiversity asset of interest. By contrast, direct measures of biodiversity were more commonly associated with informal decision processes that led to activities such as management reviews or external consultation. Workshop participants were in favor of including more formalized decision triggers in their programs, but were limited by incomplete ecological knowledge, lack of appropriately skilled staff, funding constraints, and/or uncertainty regarding intervention effectiveness. We recommend that practitioners consider including decision triggers for discussion activities (such as external consultation) in their programs as more than just early warning points for future interventions, particularly for direct measures. Decision triggers for discussions should be recognized as a critical feature of monitoring programs where information and operational limitations inhibit the use of decision triggers for interventions. © 2018 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- Authors: Foster, Claire , O'Loughlin, Luke , Sato, Chloe , Westgate, Martin , Barton, Philip
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Environmental Management Vol. 230, no. (2019), p. 94-101
- Full Text:
- Reviewed:
- Description: Decision triggers are defined thresholds in the status of monitored variables that indicate when to undertake management, and avoid undesirable ecosystem change. Decision triggers are frequently recommended to conservation practitioners as a tool to facilitate evidence-based management practices, but there has been limited attention paid to how practitioners are integrating decision triggers into existing monitoring programs. We sought to understand whether conservation practitioners’ use of decision triggers was influenced by the type of variables in their monitoring programs. We investigated this question using a practitioner-focused workshop involving a structured discussion and review of eight monitoring programs. Among our case studies, direct measures of biodiversity (e.g. native species) were more commonly monitored, but less likely to be linked to decision triggers (10% with triggers) than measures being used as surrogates (54% with triggers) for program objectives. This was because decision triggers were associated with management of threatening processes, which were often monitored as a surrogate for a biodiversity asset of interest. By contrast, direct measures of biodiversity were more commonly associated with informal decision processes that led to activities such as management reviews or external consultation. Workshop participants were in favor of including more formalized decision triggers in their programs, but were limited by incomplete ecological knowledge, lack of appropriately skilled staff, funding constraints, and/or uncertainty regarding intervention effectiveness. We recommend that practitioners consider including decision triggers for discussion activities (such as external consultation) in their programs as more than just early warning points for future interventions, particularly for direct measures. Decision triggers for discussions should be recognized as a critical feature of monitoring programs where information and operational limitations inhibit the use of decision triggers for interventions. © 2018 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
Effects of fire regime on plant species richness and composition differ among forest, woodland and heath vegetation
- Foster, Claire, Barton, Philip, MacGregor, Christopher, Catford, Jane, Blanchard, Wade, Lindenmayer, David
- Authors: Foster, Claire , Barton, Philip , MacGregor, Christopher , Catford, Jane , Blanchard, Wade , Lindenmayer, David
- Date: 2018
- Type: Text , Journal article
- Relation: Applied Vegetation Science Vol. 21, no. 1 (2018), p. 132-143
- Full Text:
- Reviewed:
- Description: Question: Do the effects of fire regimes on plant species richness and composition differ among floristically similar vegetation types?. Location: Booderee National Park, south-eastern Australia. Methods: We completed floristic surveys of 87 sites in Sydney Coastal dry sclerophyll vegetation, where fire history records have been maintained for over 55 years. We tested for associations between different aspects of the recent fire history and plant species richness and composition, and whether these relationships were consistent among structurally defined forest, woodland and heath vegetation types. Results: The relationship between fire regime variables and plant species richness and composition differed among vegetation types, despite the three vegetation types having similar species pools. Fire frequency was positively related to species richness in woodland, negatively related to species richness in heath, and unrelated to species richness in forest. These different relationships were explained by differences in the associations between fire history and species traits among vegetation types. The negative relationship between fire frequency and species richness in heath vegetation was underpinned by reduced occurrence of resprouting species at high fire frequency sites (more than four fires in 55 years). However, in forest and woodland vegetation, resprouting species were not negatively associated with fire frequency. Conclusions: We hypothesize that differing relationships among vegetation types were underpinned by differences in fire behaviour, and/or biotic and abiotic conditions, leading to differences in plant species mortality and post-fire recovery among vegetation types. Our findings suggest that even when there is a high proportion of shared species between vegetation types, fires can have very different effects on vegetation communities, depending on the structural vegetation type. Both research and management of fire regimes may therefore benefit from considering vegetation types as separate management units. © 2017 International Association for Vegetation Science
- Authors: Foster, Claire , Barton, Philip , MacGregor, Christopher , Catford, Jane , Blanchard, Wade , Lindenmayer, David
- Date: 2018
- Type: Text , Journal article
- Relation: Applied Vegetation Science Vol. 21, no. 1 (2018), p. 132-143
- Full Text:
- Reviewed:
- Description: Question: Do the effects of fire regimes on plant species richness and composition differ among floristically similar vegetation types?. Location: Booderee National Park, south-eastern Australia. Methods: We completed floristic surveys of 87 sites in Sydney Coastal dry sclerophyll vegetation, where fire history records have been maintained for over 55 years. We tested for associations between different aspects of the recent fire history and plant species richness and composition, and whether these relationships were consistent among structurally defined forest, woodland and heath vegetation types. Results: The relationship between fire regime variables and plant species richness and composition differed among vegetation types, despite the three vegetation types having similar species pools. Fire frequency was positively related to species richness in woodland, negatively related to species richness in heath, and unrelated to species richness in forest. These different relationships were explained by differences in the associations between fire history and species traits among vegetation types. The negative relationship between fire frequency and species richness in heath vegetation was underpinned by reduced occurrence of resprouting species at high fire frequency sites (more than four fires in 55 years). However, in forest and woodland vegetation, resprouting species were not negatively associated with fire frequency. Conclusions: We hypothesize that differing relationships among vegetation types were underpinned by differences in fire behaviour, and/or biotic and abiotic conditions, leading to differences in plant species mortality and post-fire recovery among vegetation types. Our findings suggest that even when there is a high proportion of shared species between vegetation types, fires can have very different effects on vegetation communities, depending on the structural vegetation type. Both research and management of fire regimes may therefore benefit from considering vegetation types as separate management units. © 2017 International Association for Vegetation Science
Conservation conundrums and the challenges of managing unexplained declines of multiple species
- Lindenmayer, David, Wood, Jeff, MacGregor, Christopher, Foster, Claire, Barton, Philip
- Authors: Lindenmayer, David , Wood, Jeff , MacGregor, Christopher , Foster, Claire , Barton, Philip
- Date: 2018
- Type: Text , Journal article
- Relation: Biological Conservation Vol. 221, no. (2018), p. 279-292
- Full Text:
- Reviewed:
- Description: The conventional approach to conserving threatened biota is to identify drivers of decline, instigate actions to mitigate threatening processes, and monitor interventions to test their effectiveness and ensure target species recover. In Australia, predation by introduced predators is a threatening process for many native mammals. Here we report the results of a 15 year monitoring study in an iconic Australian reserve, Booderee National Park, where exotic Red Fox (Vulpes vulpes) populations have been controlled through an intensive poison baiting program since 2003. Unexpectedly, we documented the collapse of native mammal fauna during this period, including fully arboreal species that should be largely unaffected by fox predation – such as the nationally Vulnerable Greater Glider (Petauroides volans) and Common Ringtail Possum (Pseudocheirus peregrinus). We used path analysis to explore potential causes of these unexpected declines. We found no compelling evidence to support hypotheses that competition with increasing native species, native predator release, or increases in native herbivores underpinned mammal declines. Beyond the path analysis, data from other studies completed both inside Booderee National Park and outside (where intensive fox baiting does not occur yet depleted fauna species remain), allowed us to rule out several drivers of change. The temporal declines we documented for arboreal marsupials were not anticipated nor explained by any clear mechanism. We propose the use of experimentally-guided reintroductions and translocations to: (1) restore empty niches such as the currently vacant apex mammal predator niche, (2) reconstruct the now depleted arboreal marsupial guild, and (3) further test key hypotheses associated with mammal decline. We also suggest that given the potential for perverse outcomes following large-scale management interventions (even those where there is high confidence of success), wildlife managers should consider maintaining reference areas (where there is no management intervention). Finally, as the declines we documented were unexpected and rapid, there is a clear need to develop more sensitive early warning signals to alert conservation managers to impending problems, allowing them to alter management regimes before major declines occur. © 2018 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton is provided in this record**
- Authors: Lindenmayer, David , Wood, Jeff , MacGregor, Christopher , Foster, Claire , Barton, Philip
- Date: 2018
- Type: Text , Journal article
- Relation: Biological Conservation Vol. 221, no. (2018), p. 279-292
- Full Text:
- Reviewed:
- Description: The conventional approach to conserving threatened biota is to identify drivers of decline, instigate actions to mitigate threatening processes, and monitor interventions to test their effectiveness and ensure target species recover. In Australia, predation by introduced predators is a threatening process for many native mammals. Here we report the results of a 15 year monitoring study in an iconic Australian reserve, Booderee National Park, where exotic Red Fox (Vulpes vulpes) populations have been controlled through an intensive poison baiting program since 2003. Unexpectedly, we documented the collapse of native mammal fauna during this period, including fully arboreal species that should be largely unaffected by fox predation – such as the nationally Vulnerable Greater Glider (Petauroides volans) and Common Ringtail Possum (Pseudocheirus peregrinus). We used path analysis to explore potential causes of these unexpected declines. We found no compelling evidence to support hypotheses that competition with increasing native species, native predator release, or increases in native herbivores underpinned mammal declines. Beyond the path analysis, data from other studies completed both inside Booderee National Park and outside (where intensive fox baiting does not occur yet depleted fauna species remain), allowed us to rule out several drivers of change. The temporal declines we documented for arboreal marsupials were not anticipated nor explained by any clear mechanism. We propose the use of experimentally-guided reintroductions and translocations to: (1) restore empty niches such as the currently vacant apex mammal predator niche, (2) reconstruct the now depleted arboreal marsupial guild, and (3) further test key hypotheses associated with mammal decline. We also suggest that given the potential for perverse outcomes following large-scale management interventions (even those where there is high confidence of success), wildlife managers should consider maintaining reference areas (where there is no management intervention). Finally, as the declines we documented were unexpected and rapid, there is a clear need to develop more sensitive early warning signals to alert conservation managers to impending problems, allowing them to alter management regimes before major declines occur. © 2018 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton is provided in this record**
Towards quantifying carrion biomass in ecosystems
- Barton, Philip, Evans, Maldwyn, Foster, Claire, Pechal, Jennifer, Bump, Joseph
- Authors: Barton, Philip , Evans, Maldwyn , Foster, Claire , Pechal, Jennifer , Bump, Joseph
- Date: 2019
- Type: Text , Journal article , Review
- Relation: Trends in Ecology and Evolution Vol. 34, no. 10 (2019), p. 950-961
- Full Text:
- Reviewed:
- Description: The decomposition of animal biomass (carrion) contributes to the recycling of energy and nutrients through ecosystems. Whereas the role of plant decomposition in ecosystems is broadly recognised, the significance of carrion to ecosystem functioning remains poorly understood. Quantitative data on carrion biomass are lacking and there is no clear pathway towards improved knowledge in this area. Here, we present a framework to show how quantities derived from individual carcasses can be scaled up using population metrics, allowing for comparisons among ecosystems and other forms of biomass. Our framework facilitates the generation of new data that is critical to building a quantitative understanding of the contribution of carrion to trophic processes and ecosystem stocks and flows. © 2019 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- Authors: Barton, Philip , Evans, Maldwyn , Foster, Claire , Pechal, Jennifer , Bump, Joseph
- Date: 2019
- Type: Text , Journal article , Review
- Relation: Trends in Ecology and Evolution Vol. 34, no. 10 (2019), p. 950-961
- Full Text:
- Reviewed:
- Description: The decomposition of animal biomass (carrion) contributes to the recycling of energy and nutrients through ecosystems. Whereas the role of plant decomposition in ecosystems is broadly recognised, the significance of carrion to ecosystem functioning remains poorly understood. Quantitative data on carrion biomass are lacking and there is no clear pathway towards improved knowledge in this area. Here, we present a framework to show how quantities derived from individual carcasses can be scaled up using population metrics, allowing for comparisons among ecosystems and other forms of biomass. Our framework facilitates the generation of new data that is critical to building a quantitative understanding of the contribution of carrion to trophic processes and ecosystem stocks and flows. © 2019 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
Higher-taxon and functional group responses of ant and bird assemblages to livestock grazing : a test of an explicit surrogate concept
- Barton, Philip, Evans, Maldwyn, Sato, Chloe, O'Loughlin, Luke, Foster, Claire
- Authors: Barton, Philip , Evans, Maldwyn , Sato, Chloe , O'Loughlin, Luke , Foster, Claire
- Date: 2019
- Type: Text , Journal article
- Relation: Ecological Indicators Vol. 96, no. (2019), p. 458-465
- Full Text:
- Reviewed:
- Description: Biodiversity monitoring programs are routinely established to quantify changes in biotic communities in response to land management. Surrogacy is implicitly used in many such monitoring programs whereby the measurement of a component of biodiversity is used to infer responses of broader biodiversity. Yet rarely is this surrogacy validated by demonstrating that measured variables and the target variable of interest have matching responses to management treatments. Here we examined the responses of higher-taxon and functional groupings of ants and birds (our surrogate variables) two years after the implementation of experimental livestock grazing treatments, and compared these with the responses of total ant and bird species richness (our target variables) to the same treatments. We found significant and strong correlations between surrogate and target variables, but this did not predict corresponding similar response to treatments. For ants, we found that the genus Monomorium had a negative response to the grazing exclusion treatment, but there was no matching response of species richness, and so no surrogacy was identified. For birds, total species richness had a weak positive response to spring/summer grazing exclusion, and the abundance of honeyeaters (Meliphagidae) showed a similar positive response, suggesting surrogacy. Our study highlights that correlations among variables do not necessarily lead to surrogacy, and indeed that different sub-components of biotic assemblages can respond in ways that contrast with overall species richness. Careful assessment of the matched responses of surrogate and target variables to management can provide a simple and robust way to critically assess biodiversity surrogacy. © 2018 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- Authors: Barton, Philip , Evans, Maldwyn , Sato, Chloe , O'Loughlin, Luke , Foster, Claire
- Date: 2019
- Type: Text , Journal article
- Relation: Ecological Indicators Vol. 96, no. (2019), p. 458-465
- Full Text:
- Reviewed:
- Description: Biodiversity monitoring programs are routinely established to quantify changes in biotic communities in response to land management. Surrogacy is implicitly used in many such monitoring programs whereby the measurement of a component of biodiversity is used to infer responses of broader biodiversity. Yet rarely is this surrogacy validated by demonstrating that measured variables and the target variable of interest have matching responses to management treatments. Here we examined the responses of higher-taxon and functional groupings of ants and birds (our surrogate variables) two years after the implementation of experimental livestock grazing treatments, and compared these with the responses of total ant and bird species richness (our target variables) to the same treatments. We found significant and strong correlations between surrogate and target variables, but this did not predict corresponding similar response to treatments. For ants, we found that the genus Monomorium had a negative response to the grazing exclusion treatment, but there was no matching response of species richness, and so no surrogacy was identified. For birds, total species richness had a weak positive response to spring/summer grazing exclusion, and the abundance of honeyeaters (Meliphagidae) showed a similar positive response, suggesting surrogacy. Our study highlights that correlations among variables do not necessarily lead to surrogacy, and indeed that different sub-components of biotic assemblages can respond in ways that contrast with overall species richness. Careful assessment of the matched responses of surrogate and target variables to management can provide a simple and robust way to critically assess biodiversity surrogacy. © 2018 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
Integrating theory into disturbance interaction experiments to better inform ecosystem management
- Foster, Claire, Sato, Chloe, Lindenmayer, David, Barton, Philip
- Authors: Foster, Claire , Sato, Chloe , Lindenmayer, David , Barton, Philip
- Date: 2016
- Type: Text , Journal article
- Relation: Global Change Biology Vol. 22, no. 4 (2016), p. 1325-1335
- Full Text:
- Reviewed:
- Description: Managing multiple, interacting disturbances is a key challenge to biodiversity conservation, and one that will only increase as global change drivers continue to alter disturbance regimes. Theoretical studies have highlighted the importance of a mechanistic understanding of stressor interactions for improving the prediction and management of interactive effects. However, many conservation studies are not designed or interpreted in the context of theory and instead focus on case-specific management questions. This is a problem as it means that few studies test the relationships highlighted in theoretical models as being important for ecological management. We explore the extent of this problem among studies of interacting disturbances by reviewing recent experimental studies of the interaction between fire and grazing in terrestrial ecosystems. Interactions between fire and grazing can occur via a number of pathways; one disturbance can modify the other's likelihood, intensity or spatial distribution, or one disturbance can alter the other's impacts on individual organisms. The strength of such interactions will vary depending on disturbance attributes (e.g. size or intensity), and this variation is likely to be nonlinear. We show that few experiments testing fire-grazing interactions are able to identify the mechanistic pathway driving an observed interaction, and most are unable to detect nonlinear effects. We demonstrate how these limitations compromise the ability of experimental studies to effectively inform ecological management. We propose a series of adjustments to the design of disturbance interaction experiments that would enable tests of key theoretical pathways and provide the deeper ecological understanding necessary for effective management. Such considerations are relevant to studies of a broad range of ecological interactions and are critical to informing the management of disturbance regimes in the context of accelerating global change. © 2016 John Wiley & Sons Ltd.
- Authors: Foster, Claire , Sato, Chloe , Lindenmayer, David , Barton, Philip
- Date: 2016
- Type: Text , Journal article
- Relation: Global Change Biology Vol. 22, no. 4 (2016), p. 1325-1335
- Full Text:
- Reviewed:
- Description: Managing multiple, interacting disturbances is a key challenge to biodiversity conservation, and one that will only increase as global change drivers continue to alter disturbance regimes. Theoretical studies have highlighted the importance of a mechanistic understanding of stressor interactions for improving the prediction and management of interactive effects. However, many conservation studies are not designed or interpreted in the context of theory and instead focus on case-specific management questions. This is a problem as it means that few studies test the relationships highlighted in theoretical models as being important for ecological management. We explore the extent of this problem among studies of interacting disturbances by reviewing recent experimental studies of the interaction between fire and grazing in terrestrial ecosystems. Interactions between fire and grazing can occur via a number of pathways; one disturbance can modify the other's likelihood, intensity or spatial distribution, or one disturbance can alter the other's impacts on individual organisms. The strength of such interactions will vary depending on disturbance attributes (e.g. size or intensity), and this variation is likely to be nonlinear. We show that few experiments testing fire-grazing interactions are able to identify the mechanistic pathway driving an observed interaction, and most are unable to detect nonlinear effects. We demonstrate how these limitations compromise the ability of experimental studies to effectively inform ecological management. We propose a series of adjustments to the design of disturbance interaction experiments that would enable tests of key theoretical pathways and provide the deeper ecological understanding necessary for effective management. Such considerations are relevant to studies of a broad range of ecological interactions and are critical to informing the management of disturbance regimes in the context of accelerating global change. © 2016 John Wiley & Sons Ltd.
Herbivory and fire interact to affect forest understory habitat, but not its use by small vertebrates
- Foster, Claire, Barton, Philip, Sato, C. F., Wood, J. T., Macgregor, C. I., Lindenmayer, David
- Authors: Foster, Claire , Barton, Philip , Sato, C. F. , Wood, J. T. , Macgregor, C. I. , Lindenmayer, David
- Date: 2016
- Type: Text , Journal article
- Relation: Animal Conservation Vol. 19, no. 1 (2016), p. 15-25
- Full Text:
- Reviewed:
- Description: Herbivory and fire are two disturbances that often co-occur, but studies of their interactive effects are rare outside of grassland ecosystems. We experimentally tested the interactive effects of prescribed fire and macropod herbivory on forest understory vegetation and its vertebrate fauna. Fire and herbivory interacted synergistically to affect forest understory vegetation, with palatable plants showing poor post-fire recovery in unfenced sites compared with herbivore exclusion sites. Despite this strong interactive effect on vegetation, small vertebrates responded to the individual, and not the interactive effects of disturbance. The native insectivorous mammal Antechinus stuartii was more frequently encountered on large herbivore exclusion sites, as was the introduced European rabbit. In contrast, the small skink Lampropholis delicata was more common on sites with high densities of large herbivores. Skinks, snakes and European rabbits were also more active on burnt than unburnt sites. Our results suggest that it may be necessary to manage the macropod herbivore population after fire to prevent the decline of palatable plants, and maintain the dense habitat required by some small mammals. However, as the invasive rabbit was most active in macropod-free sites after fire, any management must include control of both types of herbivores. A mix of understory densities may also need to be maintained to ensure the persistence of species preferring more open habitats. Our study demonstrates that interactive effects of disturbance on vegetation communities may not lead to predictable effects on animals, and highlights the importance of considering both multiple stressors, and multiple species, in the management of disturbance regimes. © 2016 The Zoological Society of London.
- Authors: Foster, Claire , Barton, Philip , Sato, C. F. , Wood, J. T. , Macgregor, C. I. , Lindenmayer, David
- Date: 2016
- Type: Text , Journal article
- Relation: Animal Conservation Vol. 19, no. 1 (2016), p. 15-25
- Full Text:
- Reviewed:
- Description: Herbivory and fire are two disturbances that often co-occur, but studies of their interactive effects are rare outside of grassland ecosystems. We experimentally tested the interactive effects of prescribed fire and macropod herbivory on forest understory vegetation and its vertebrate fauna. Fire and herbivory interacted synergistically to affect forest understory vegetation, with palatable plants showing poor post-fire recovery in unfenced sites compared with herbivore exclusion sites. Despite this strong interactive effect on vegetation, small vertebrates responded to the individual, and not the interactive effects of disturbance. The native insectivorous mammal Antechinus stuartii was more frequently encountered on large herbivore exclusion sites, as was the introduced European rabbit. In contrast, the small skink Lampropholis delicata was more common on sites with high densities of large herbivores. Skinks, snakes and European rabbits were also more active on burnt than unburnt sites. Our results suggest that it may be necessary to manage the macropod herbivore population after fire to prevent the decline of palatable plants, and maintain the dense habitat required by some small mammals. However, as the invasive rabbit was most active in macropod-free sites after fire, any management must include control of both types of herbivores. A mix of understory densities may also need to be maintained to ensure the persistence of species preferring more open habitats. Our study demonstrates that interactive effects of disturbance on vegetation communities may not lead to predictable effects on animals, and highlights the importance of considering both multiple stressors, and multiple species, in the management of disturbance regimes. © 2016 The Zoological Society of London.
Environmental and spatial drivers of spider diversity at contrasting microhabitats
- Barton, Philip, Evans, Maldwyn, Foster, Claire, Cunningham, Saul, Manning, Adrian
- Authors: Barton, Philip , Evans, Maldwyn , Foster, Claire , Cunningham, Saul , Manning, Adrian
- Date: 2017
- Type: Text , Journal article
- Relation: Austral Ecology Vol. 42, no. 6 (2017), p. 700-710
- Full Text:
- Reviewed:
- Description: The relative importance of environmental and spatial drivers of animal diversity varies across scales, but identifying these scales can be difficult if a sampling design does not match the scale of the target organisms' interaction with their habitat. In this study, we quantify and compare the effects of environmental variation and spatial proximity on ground-dwelling spider assemblages sampled from three distinct microhabitat types (open grassland, logs, trees) that recur across structurally heterogeneous grassy woodlands. We used model selection and multivariate procedures to compare the effects of different environmental attributes and spatial proximity on spider assemblages at each microhabitat type. We found that species richness and assemblage composition differed among microhabitat types. Bare ground cover had a negative effect on spider richness under trees, but a positive effect on spider richness in open grassland. Turnover in spider assemblages from open grassland was correlated with environmental distance, but not geographic distance. By contrast, turnover in spiders at logs and trees was correlated with geographic distance, but not environmental distance. Our study suggests that spider assemblages from widespread and connected open grassland habitat were more affected by environmental than spatial gradients, whereas spiders at log and tree habitats were more affected by spatial distance among these discrete but recurring microhabitats. Deliberate selection and sampling of small-scale habitat features can provide robust information about the drivers of arthropod diversity and turnover in landscapes. © 2017 Ecological Society of Australia
- Authors: Barton, Philip , Evans, Maldwyn , Foster, Claire , Cunningham, Saul , Manning, Adrian
- Date: 2017
- Type: Text , Journal article
- Relation: Austral Ecology Vol. 42, no. 6 (2017), p. 700-710
- Full Text:
- Reviewed:
- Description: The relative importance of environmental and spatial drivers of animal diversity varies across scales, but identifying these scales can be difficult if a sampling design does not match the scale of the target organisms' interaction with their habitat. In this study, we quantify and compare the effects of environmental variation and spatial proximity on ground-dwelling spider assemblages sampled from three distinct microhabitat types (open grassland, logs, trees) that recur across structurally heterogeneous grassy woodlands. We used model selection and multivariate procedures to compare the effects of different environmental attributes and spatial proximity on spider assemblages at each microhabitat type. We found that species richness and assemblage composition differed among microhabitat types. Bare ground cover had a negative effect on spider richness under trees, but a positive effect on spider richness in open grassland. Turnover in spider assemblages from open grassland was correlated with environmental distance, but not geographic distance. By contrast, turnover in spiders at logs and trees was correlated with geographic distance, but not environmental distance. Our study suggests that spider assemblages from widespread and connected open grassland habitat were more affected by environmental than spatial gradients, whereas spiders at log and tree habitats were more affected by spatial distance among these discrete but recurring microhabitats. Deliberate selection and sampling of small-scale habitat features can provide robust information about the drivers of arthropod diversity and turnover in landscapes. © 2017 Ecological Society of Australia
Novel bird responses to successive, large-scale, landscape transformations
- Lindenmayer, David, Blanchard, Wade, Westgate, Martin, Foster, Claire, Barton, Philip
- Authors: Lindenmayer, David , Blanchard, Wade , Westgate, Martin , Foster, Claire , Barton, Philip
- Date: 2019
- Type: Text , Journal article
- Relation: Ecological Monographs Vol. 89, no. 3 (2019), p.
- Full Text:
- Reviewed:
- Description: Transformation of intact vegetation into new kinds and configurations of human-modified habitats is a well-established driver of biodiversity loss. Following initial conversion, many human-dominated landscapes are then subject to further large-scale changes in land use. The impacts on biodiversity of repeated changes in land use remain poorly known, particularly how changes in the matrix interact with initial patterns of vegetation clearing. We used an 18-yr study of birds in remnant patches of endangered temperate woodland in south-eastern Australia to quantify the spatial and temporal effects of successive land use transformation in the surrounding landscape. We examined bird response to (1) initial patterns of landscape modification (creating semi-cleared grazing land dominated by pastures that surrounded remnant woodland patches), (2) subsequent establishment and maturation of exotic tree plantations on the pastures surrounding woodland patches, and (3) additive and interactive effects of both types of landscape transformation. The majority of the 57 bird species modeled responded to conversion of grazing land to exotic plantations, either independently from initial patterns of landscape transformation (20 species), or interactively (18 species) or additively (15 species) with initial landscape transformation. The occurrence of only one species (the Common Bronzewing) was related to patterns of initial transformation but not subsequent transformation due to plantation establishment. Thus, despite many characteristics of the woodland patches within the plantation remaining largely unaltered throughout our 18-yr investigation, the matrix had a profound effect on the kinds of species inhabiting them, with such impacts often magnified over time as the matrix continued to change. Plantation establishment triggered new regional-level spatial processes with effects on birds detected in woodland patches up to 2 km away from the plantation. Matrix conversion selected for species with different traits (size, diet and movement patterns) compared to the initial transformation, suggesting it is acting as a different filter on the bird community. New kinds of landscape transformation (such as plantation establishment on previously cleared land) can radically affect the species that have persisted for many decades in previously modified landscapes. This highlights the challenges, but also opportunities, for conserving taxa in ever changing human-dominated environments. © 2019 by the Ecological Society of America. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- Authors: Lindenmayer, David , Blanchard, Wade , Westgate, Martin , Foster, Claire , Barton, Philip
- Date: 2019
- Type: Text , Journal article
- Relation: Ecological Monographs Vol. 89, no. 3 (2019), p.
- Full Text:
- Reviewed:
- Description: Transformation of intact vegetation into new kinds and configurations of human-modified habitats is a well-established driver of biodiversity loss. Following initial conversion, many human-dominated landscapes are then subject to further large-scale changes in land use. The impacts on biodiversity of repeated changes in land use remain poorly known, particularly how changes in the matrix interact with initial patterns of vegetation clearing. We used an 18-yr study of birds in remnant patches of endangered temperate woodland in south-eastern Australia to quantify the spatial and temporal effects of successive land use transformation in the surrounding landscape. We examined bird response to (1) initial patterns of landscape modification (creating semi-cleared grazing land dominated by pastures that surrounded remnant woodland patches), (2) subsequent establishment and maturation of exotic tree plantations on the pastures surrounding woodland patches, and (3) additive and interactive effects of both types of landscape transformation. The majority of the 57 bird species modeled responded to conversion of grazing land to exotic plantations, either independently from initial patterns of landscape transformation (20 species), or interactively (18 species) or additively (15 species) with initial landscape transformation. The occurrence of only one species (the Common Bronzewing) was related to patterns of initial transformation but not subsequent transformation due to plantation establishment. Thus, despite many characteristics of the woodland patches within the plantation remaining largely unaltered throughout our 18-yr investigation, the matrix had a profound effect on the kinds of species inhabiting them, with such impacts often magnified over time as the matrix continued to change. Plantation establishment triggered new regional-level spatial processes with effects on birds detected in woodland patches up to 2 km away from the plantation. Matrix conversion selected for species with different traits (size, diet and movement patterns) compared to the initial transformation, suggesting it is acting as a different filter on the bird community. New kinds of landscape transformation (such as plantation establishment on previously cleared land) can radically affect the species that have persisted for many decades in previously modified landscapes. This highlights the challenges, but also opportunities, for conserving taxa in ever changing human-dominated environments. © 2019 by the Ecological Society of America. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- «
- ‹
- 1
- ›
- »