Matching algorithms : fundamentals, applications and challenges
- Ren, Jing, Xia, Feng, Chen, Xiangtai, Liu, Jiaying, Sultanova, Nargiz
- Authors: Ren, Jing , Xia, Feng , Chen, Xiangtai , Liu, Jiaying , Sultanova, Nargiz
- Date: 2021
- Type: Text , Journal article , Review
- Relation: IEEE Transactions on Emerging Topics in Computational Intelligence Vol. 5, no. 3 (2021), p. 332-350
- Full Text:
- Reviewed:
- Description: Matching plays a vital role in the rational allocation of resources in many areas, ranging from market operation to people's daily lives. In economics, the term matching theory is coined for pairing two agents in a specific market to reach a stable or optimal state. In computer science, all branches of matching problems have emerged, such as the question-answer matching in information retrieval, user-item matching in a recommender system, and entity-relation matching in the knowledge graph. A preference list is the core element during a matching process, which can either be obtained directly from the agents or generated indirectly by prediction. Based on the preference list access, matching problems are divided into two categories, i.e., explicit matching and implicit matching. In this paper, we first introduce the matching theory's basic models and algorithms in explicit matching. The existing methods for coping with various matching problems in implicit matching are reviewed, such as retrieval matching, user-item matching, entity-relation matching, and image matching. Furthermore, we look into representative applications in these areas, including marriage and labor markets in explicit matching and several similarity-based matching problems in implicit matching. Finally, this survey paper concludes with a discussion of open issues and promising future directions in the field of matching. © 2017 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Jing Ren, Xia Feng, Nargiz Sultanova" is provided in this record**
- Authors: Ren, Jing , Xia, Feng , Chen, Xiangtai , Liu, Jiaying , Sultanova, Nargiz
- Date: 2021
- Type: Text , Journal article , Review
- Relation: IEEE Transactions on Emerging Topics in Computational Intelligence Vol. 5, no. 3 (2021), p. 332-350
- Full Text:
- Reviewed:
- Description: Matching plays a vital role in the rational allocation of resources in many areas, ranging from market operation to people's daily lives. In economics, the term matching theory is coined for pairing two agents in a specific market to reach a stable or optimal state. In computer science, all branches of matching problems have emerged, such as the question-answer matching in information retrieval, user-item matching in a recommender system, and entity-relation matching in the knowledge graph. A preference list is the core element during a matching process, which can either be obtained directly from the agents or generated indirectly by prediction. Based on the preference list access, matching problems are divided into two categories, i.e., explicit matching and implicit matching. In this paper, we first introduce the matching theory's basic models and algorithms in explicit matching. The existing methods for coping with various matching problems in implicit matching are reviewed, such as retrieval matching, user-item matching, entity-relation matching, and image matching. Furthermore, we look into representative applications in these areas, including marriage and labor markets in explicit matching and several similarity-based matching problems in implicit matching. Finally, this survey paper concludes with a discussion of open issues and promising future directions in the field of matching. © 2017 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Jing Ren, Xia Feng, Nargiz Sultanova" is provided in this record**
On the correlation between research complexity and academic competitiveness
- Ren, Jing, Lee, Ivan, Wang, Lei, Chen, Xiangtai, Xia, Feng
- Authors: Ren, Jing , Lee, Ivan , Wang, Lei , Chen, Xiangtai , Xia, Feng
- Date: 2020
- Type: Text , Conference paper
- Relation: 22nd International Conference on Asia-Pacific Digital Libraries, ICADL 2020, Kyoto, Japan, 30 November to 1 December 2020, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12504 LNCS, p. 416-422
- Full Text:
- Reviewed:
- Description: Academic capacity is a common way to reflect the educational level of a country or district. The aim of this study is to explore the difference between the scientific research level of institutions and countries. By proposing an indicator named Citation-weighted Research Complexity Index (CRCI), we profile the academic capacity of universities and countries with respect to research complexity. The relationships between CRCI of universities and other relevant academic evaluation indicators are examined. To explore the correlation between academic capacity and economic level, the relationship between research complexity and GDP per capita is analysed. With experiments on the Microsoft Academic Graph data set, we investigate publications across 183 countries and universities from the Academic Ranking of World Universities in 19 research fields. Experimental results reveal that universities with higher research complexity have higher fitness. In addition, for developed countries, the development of economics has a positive correlation with scientific research. Furthermore, we visualize the current level of scientific research across all disciplines from a global perspective. © 2020, Springer Nature Switzerland AG.
- Authors: Ren, Jing , Lee, Ivan , Wang, Lei , Chen, Xiangtai , Xia, Feng
- Date: 2020
- Type: Text , Conference paper
- Relation: 22nd International Conference on Asia-Pacific Digital Libraries, ICADL 2020, Kyoto, Japan, 30 November to 1 December 2020, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12504 LNCS, p. 416-422
- Full Text:
- Reviewed:
- Description: Academic capacity is a common way to reflect the educational level of a country or district. The aim of this study is to explore the difference between the scientific research level of institutions and countries. By proposing an indicator named Citation-weighted Research Complexity Index (CRCI), we profile the academic capacity of universities and countries with respect to research complexity. The relationships between CRCI of universities and other relevant academic evaluation indicators are examined. To explore the correlation between academic capacity and economic level, the relationship between research complexity and GDP per capita is analysed. With experiments on the Microsoft Academic Graph data set, we investigate publications across 183 countries and universities from the Academic Ranking of World Universities in 19 research fields. Experimental results reveal that universities with higher research complexity have higher fitness. In addition, for developed countries, the development of economics has a positive correlation with scientific research. Furthermore, we visualize the current level of scientific research across all disciplines from a global perspective. © 2020, Springer Nature Switzerland AG.
Heterogeneous graph learning for explainable recommendation over academic networks
- Chen, Xiangtai, Tang, Tao, Ren, Jing, Lee, Ivan, Chen, Honglong, Xia, Feng
- Authors: Chen, Xiangtai , Tang, Tao , Ren, Jing , Lee, Ivan , Chen, Honglong , Xia, Feng
- Date: 2021
- Type: Text , Conference paper
- Relation: 2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021, Virtual, Online, 14-17 December 2021, ACM International Conference Proceeding Series p. 29-36
- Full Text:
- Reviewed:
- Description: With the explosive growth of new graduates with research degrees every year, unprecedented challenges arise for early-career researchers to find a job at a suitable institution. This study aims to understand the behavior of academic job transition and hence recommend suitable institutions for PhD graduates. Specifically, we design a deep learning model to predict the career move of early-career researchers and provide suggestions. The design is built on top of scholarly/academic networks, which contains abundant information about scientific collaboration among scholars and institutions. We construct a heterogeneous scholarly network to facilitate the exploring of the behavior of career moves and the recommendation of institutions for scholars. We devise an unsupervised learning model called HAI (Heterogeneous graph Attention InfoMax) which aggregates attention mechanism and mutual information for institution recommendation. Moreover, we propose scholar attention and meta-path attention to discover the hidden relationships between several meta-paths. With these mechanisms, HAI provides ordered recommendations with explainability. We evaluate HAI upon a real-world dataset against baseline methods. Experimental results verify the effectiveness and efficiency of our approach. © 2021 ACM.
- Authors: Chen, Xiangtai , Tang, Tao , Ren, Jing , Lee, Ivan , Chen, Honglong , Xia, Feng
- Date: 2021
- Type: Text , Conference paper
- Relation: 2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021, Virtual, Online, 14-17 December 2021, ACM International Conference Proceeding Series p. 29-36
- Full Text:
- Reviewed:
- Description: With the explosive growth of new graduates with research degrees every year, unprecedented challenges arise for early-career researchers to find a job at a suitable institution. This study aims to understand the behavior of academic job transition and hence recommend suitable institutions for PhD graduates. Specifically, we design a deep learning model to predict the career move of early-career researchers and provide suggestions. The design is built on top of scholarly/academic networks, which contains abundant information about scientific collaboration among scholars and institutions. We construct a heterogeneous scholarly network to facilitate the exploring of the behavior of career moves and the recommendation of institutions for scholars. We devise an unsupervised learning model called HAI (Heterogeneous graph Attention InfoMax) which aggregates attention mechanism and mutual information for institution recommendation. Moreover, we propose scholar attention and meta-path attention to discover the hidden relationships between several meta-paths. With these mechanisms, HAI provides ordered recommendations with explainability. We evaluate HAI upon a real-world dataset against baseline methods. Experimental results verify the effectiveness and efficiency of our approach. © 2021 ACM.
- «
- ‹
- 1
- ›
- »