Projections of southern hemisphere tropical cyclone track density using CMIP5 models
- Bell, Samuel, Chand, Savin, Tory, Kevin, Dowdy, Andrew, Turville, Christopher, Ye, Harvey
- Authors: Bell, Samuel , Chand, Savin , Tory, Kevin , Dowdy, Andrew , Turville, Christopher , Ye, Harvey
- Date: 2019
- Type: Text , Journal article
- Relation: Climate Dynamics Vol. 52, no. 9-10 (2019), p. 6065-6079
- Full Text:
- Reviewed:
- Description: A recently validated algorithm for detecting and tracking tropical cyclones (TCs) in coarse resolution climate models was applied to a selected group of 12 models from the Coupled Model Intercomparison Project (CMIP5) to assess potential changes in TC track characteristics in the Southern Hemisphere (SH) due to greenhouse warming. Current-climate simulations over the period 1970–2000 are first evaluated against observations using measures of TC genesis location and frequency, as well as track trajectory and lifetime in seven objectively defined genesis regions. The 12-model (12-M) ensemble showed substantial skill in reproducing a realistic TC climatology over the evaluation period. To address potential biases associated with model interdependency, analyses were repeated with an ensemble of five independent models (5-M). Results from both the 12-M and 5-M ensembles were very similar, instilling confidence in the models for climate projections if the current TC-climate relationship is to remain stationary. Projected changes in TC track density between the current- and future-climate (2070–2100) simulations under the Representatives Concentration 8.5 Pathways (RCP8.5) are also assessed. Overall, projection results showed a substantial decrease (~ 1–3 per decade) in track density over most parts of the SH by the end of the twenty-first century. This decrease is attributed to a significant reduction in TC numbers (~ 15–42%) consistent with changes in large-scale environmental parameters such as relative vorticity, environmental vertical wind shear and relative humidity. This study may assist with adaption pathways and implications for regional-scale climate change for vulnerable regions in the SH.
- Authors: Bell, Samuel , Chand, Savin , Tory, Kevin , Dowdy, Andrew , Turville, Christopher , Ye, Harvey
- Date: 2019
- Type: Text , Journal article
- Relation: Climate Dynamics Vol. 52, no. 9-10 (2019), p. 6065-6079
- Full Text:
- Reviewed:
- Description: A recently validated algorithm for detecting and tracking tropical cyclones (TCs) in coarse resolution climate models was applied to a selected group of 12 models from the Coupled Model Intercomparison Project (CMIP5) to assess potential changes in TC track characteristics in the Southern Hemisphere (SH) due to greenhouse warming. Current-climate simulations over the period 1970–2000 are first evaluated against observations using measures of TC genesis location and frequency, as well as track trajectory and lifetime in seven objectively defined genesis regions. The 12-model (12-M) ensemble showed substantial skill in reproducing a realistic TC climatology over the evaluation period. To address potential biases associated with model interdependency, analyses were repeated with an ensemble of five independent models (5-M). Results from both the 12-M and 5-M ensembles were very similar, instilling confidence in the models for climate projections if the current TC-climate relationship is to remain stationary. Projected changes in TC track density between the current- and future-climate (2070–2100) simulations under the Representatives Concentration 8.5 Pathways (RCP8.5) are also assessed. Overall, projection results showed a substantial decrease (~ 1–3 per decade) in track density over most parts of the SH by the end of the twenty-first century. This decrease is attributed to a significant reduction in TC numbers (~ 15–42%) consistent with changes in large-scale environmental parameters such as relative vorticity, environmental vertical wind shear and relative humidity. This study may assist with adaption pathways and implications for regional-scale climate change for vulnerable regions in the SH.
Tropical cyclone tracks in CMIP5 models : statistical assessment and future projections
- Authors: Bell, Samuel
- Date: 2019
- Type: Text , Thesis , PhD
- Full Text:
- Description: Tropical cyclones (TCs) can have devastating social and economic impacts on coastal communities situated all around the globe. The impact of anthropogenic induced climate change on TC activity has attracted widespread scientific interest over the past decade, resulting in the development of a variety of approaches for TC projection in climate models. However, many uncertainties remain, including those associated with the TC detection algorithm and climate model inter-dependencies that impact projection results. This thesis seeks to address these uncertainties, as well as filling several knowledge gaps in the literature such as limited TC projection studies in the Southern Hemisphere and a global need for regional-scale TC track density projections. The independent TC detection and tracking algorithm utilised in this thesis is first evaluated to determine if it can simulate a realistic TC track climatology in reanalysis data. By way of cluster analysis, model-detected and observed TC tracks are compared and objective criteria for a consistent “TC track” definition are established. Regional-scale TC track projections are then examined in each TC basin around the globe. The exact methodology of cluster analysis in each basin is slightly modified to accommodate basin-scale differences in track climatology but generally follows a cluster assessment of TC tracks in observations, historical climate simulations and future climate projections using results from the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Regional impacts of the El Niño Southern Oscillation (ENSO) on TC tracks are also examined in current- and future-climates. Projection results are found to be supportive of existing studies, especially in the North Pacific and the Southern Hemisphere. Isolation of TC tracks into clusters indicated that the regional dominance of ENSO is well simulated by the CMIP5 models. Several regional changes in TC activity are noted and attributed to projected changes in the large-scale environment, and changes in ENSO-specific conditions.
- Description: Doctor of Philosophy
- Authors: Bell, Samuel
- Date: 2019
- Type: Text , Thesis , PhD
- Full Text:
- Description: Tropical cyclones (TCs) can have devastating social and economic impacts on coastal communities situated all around the globe. The impact of anthropogenic induced climate change on TC activity has attracted widespread scientific interest over the past decade, resulting in the development of a variety of approaches for TC projection in climate models. However, many uncertainties remain, including those associated with the TC detection algorithm and climate model inter-dependencies that impact projection results. This thesis seeks to address these uncertainties, as well as filling several knowledge gaps in the literature such as limited TC projection studies in the Southern Hemisphere and a global need for regional-scale TC track density projections. The independent TC detection and tracking algorithm utilised in this thesis is first evaluated to determine if it can simulate a realistic TC track climatology in reanalysis data. By way of cluster analysis, model-detected and observed TC tracks are compared and objective criteria for a consistent “TC track” definition are established. Regional-scale TC track projections are then examined in each TC basin around the globe. The exact methodology of cluster analysis in each basin is slightly modified to accommodate basin-scale differences in track climatology but generally follows a cluster assessment of TC tracks in observations, historical climate simulations and future climate projections using results from the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Regional impacts of the El Niño Southern Oscillation (ENSO) on TC tracks are also examined in current- and future-climates. Projection results are found to be supportive of existing studies, especially in the North Pacific and the Southern Hemisphere. Isolation of TC tracks into clusters indicated that the regional dominance of ENSO is well simulated by the CMIP5 models. Several regional changes in TC activity are noted and attributed to projected changes in the large-scale environment, and changes in ENSO-specific conditions.
- Description: Doctor of Philosophy
- Bell, Samuel, Chand, Savin, Tory, Kevin, Turville, Christopher, Ye, Harvey
- Authors: Bell, Samuel , Chand, Savin , Tory, Kevin , Turville, Christopher , Ye, Harvey
- Date: 2019
- Type: Text , Journal article
- Relation: Climate Dynamics Vol. 53, no. 7-8 (2019), p. 4841-4855
- Full Text: false
- Reviewed:
- Description: The sensitivity of tropical cyclone (TC) projection results to different models and the detection and tracking scheme used is well established in the literature. Here, future climate projections of TC activity in the Eastern North Pacific basin (ENP, defined from 0 degrees to 40 degrees N and 180 degrees to similar to 75 degrees W) are assessed with a model- and basin-independent detection and tracking scheme that was trained in reanalysis data. The scheme is applied to models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiments forced under the historical and Representative Concentration Pathway 8.5 (RCP8.5) conditions. TC tracks from the observed records and models are analysed simultaneously with a curve-clustering algorithm, allowing observed and model tracks to be projected onto the same set of clusters. The ENP is divided into three clusters, one in the Central North Pacific (CNP) and two off the Mexican coast, as in prior studies. After accounting for model biases and auto-correlation, projection results under RCP8.5 indicated TC genesis to be significantly suppressed east of 125 degrees W, and significantly enhanced west of 145 degrees W by the end of the twenty-first century. Regional TC track exposure was found to significantly increase around Hawaii (similar to 86%), as shown in earlier studies, owing to increased TC genesis, particularly to the south-east of the island nation. TC exposure to Southern Mexico was shown to decrease (similar to 4%), owing to a south-westward displacement of TCs and overall suppression of genesis near the Mexican coastline. The large-scale environmental conditions most consistent with these projected changes were vertical wind shear and relative humidity.
Review of tropical cyclones in the Australian region : Climatology, variability, predictability, and trends
- Chand, Savin, Dowdy, Andrew, Ramsay, Hamish, Walsh, Kevin, Tory, Kevin, Power, Scott, Bell, Samuel, Lavender, Sally, Ye, Hua, Kuleshov, Yuri
- Authors: Chand, Savin , Dowdy, Andrew , Ramsay, Hamish , Walsh, Kevin , Tory, Kevin , Power, Scott , Bell, Samuel , Lavender, Sally , Ye, Hua , Kuleshov, Yuri
- Date: 2019
- Type: Text , Journal article , Review
- Relation: Wiley Interdisciplinary Reviews: Climate Change Vol. 10, no. 5 (2019), p. 1-17
- Full Text:
- Reviewed:
- Description: Tropical cyclones (TCs) can have severe impacts on Australia. These include extreme rainfall and winds, and coastal hazards such as destructive waves, storm surges, estuarine flooding, and coastal erosion. Various aspects of TCs in the Australian region have been documented over the past several decades. In recent years, increasing emphasis has been placed on human-induced climate change effects on TCs in the Australian region and elsewhere around the globe. However, large natural variability and the lack of consistent long-term TC observations have often complicated the detection and attribution of TC trends. Efforts have been made to improve TC records for Australia over the past decades, but it is still unclear whether such records are sufficient to provide better understanding of the impacts of natural climate variability and climate change. It is important to note that the damage costs associated with tropical cyclones in Australia have increased in recent decades and will continue to increase due to growing coastal settlement and infrastructure development. Therefore, it is critical that any coastal infrastructure planning and engineering decisions, as well as disaster management decisions, strongly consider future risks from tropical cyclones. A better understanding of tropical cyclones in a changing climate will provide key insights that can help mitigate impacts of tropical cyclones on vulnerable communities. An objective assessment of the Australian TCs at regional scale and its link with climate variability and change using improved and up-to-date data records is more imperative now than before. This article is categorized under: Paleoclimates and Current Trends > Modern Climate Change.
- Authors: Chand, Savin , Dowdy, Andrew , Ramsay, Hamish , Walsh, Kevin , Tory, Kevin , Power, Scott , Bell, Samuel , Lavender, Sally , Ye, Hua , Kuleshov, Yuri
- Date: 2019
- Type: Text , Journal article , Review
- Relation: Wiley Interdisciplinary Reviews: Climate Change Vol. 10, no. 5 (2019), p. 1-17
- Full Text:
- Reviewed:
- Description: Tropical cyclones (TCs) can have severe impacts on Australia. These include extreme rainfall and winds, and coastal hazards such as destructive waves, storm surges, estuarine flooding, and coastal erosion. Various aspects of TCs in the Australian region have been documented over the past several decades. In recent years, increasing emphasis has been placed on human-induced climate change effects on TCs in the Australian region and elsewhere around the globe. However, large natural variability and the lack of consistent long-term TC observations have often complicated the detection and attribution of TC trends. Efforts have been made to improve TC records for Australia over the past decades, but it is still unclear whether such records are sufficient to provide better understanding of the impacts of natural climate variability and climate change. It is important to note that the damage costs associated with tropical cyclones in Australia have increased in recent decades and will continue to increase due to growing coastal settlement and infrastructure development. Therefore, it is critical that any coastal infrastructure planning and engineering decisions, as well as disaster management decisions, strongly consider future risks from tropical cyclones. A better understanding of tropical cyclones in a changing climate will provide key insights that can help mitigate impacts of tropical cyclones on vulnerable communities. An objective assessment of the Australian TCs at regional scale and its link with climate variability and change using improved and up-to-date data records is more imperative now than before. This article is categorized under: Paleoclimates and Current Trends > Modern Climate Change.
Statistical assessment of the OWZ Tropical Cyclone Tracking Scheme in ERA-Interim
- Bell, Samuel, Chand, Savin, Tory, Kevin, Turville, Christopher
- Authors: Bell, Samuel , Chand, Savin , Tory, Kevin , Turville, Christopher
- Date: 2018
- Type: Text , Journal article
- Relation: Journal of Climate Vol. 31, no. 6 (2018), p. 2217-2232
- Full Text:
- Reviewed:
- Description: The Okubo–Weiss–Zeta (OWZ) tropical cyclone (TC) detection scheme, which has been used to detect TCs in climate, seasonal prediction, and weather forecast models, is assessed on its ability to produce a realistic TC track climatology in the ERA-Interim product over the 25-yr period 1989 to 2013. The analysis focuses on TCs that achieve gale-force (17ms21) sustained winds. Objective criteria were established to define TC tracks once they reach gale force for both observed and detected TCs. A lack of consistency between storm tracks preceding this level of intensity led these track segments to be removed from the analysis.Asubtropical jet (STJ) diagnostic is used to terminate transitioning TCs and is found to be preferable to a fixed latitude cutoff point. TC tracks were analyzed across seven TC basins, using a probabilistic clustering technique that is based on regression mixture models. The technique grouped TC tracks together based on their geographical location and shape of trajectory in five separate ‘‘cluster regions’’ around the globe. A mean trajectory was then regressed for each cluster that showed good agreement between the detected and observed tracks. Other track measures such as interannual TC days and translational speeds were also replicated to a satisfactory level, with TC days showing limited sensitivity to different latitude cutoff points. Successful validation in reanalysis data allows this model- and grid-resolution-independent TC tracking scheme to be applied to climate models with confidence in its ability to identify TC tracks in coarse-resolution climate models.
- Authors: Bell, Samuel , Chand, Savin , Tory, Kevin , Turville, Christopher
- Date: 2018
- Type: Text , Journal article
- Relation: Journal of Climate Vol. 31, no. 6 (2018), p. 2217-2232
- Full Text:
- Reviewed:
- Description: The Okubo–Weiss–Zeta (OWZ) tropical cyclone (TC) detection scheme, which has been used to detect TCs in climate, seasonal prediction, and weather forecast models, is assessed on its ability to produce a realistic TC track climatology in the ERA-Interim product over the 25-yr period 1989 to 2013. The analysis focuses on TCs that achieve gale-force (17ms21) sustained winds. Objective criteria were established to define TC tracks once they reach gale force for both observed and detected TCs. A lack of consistency between storm tracks preceding this level of intensity led these track segments to be removed from the analysis.Asubtropical jet (STJ) diagnostic is used to terminate transitioning TCs and is found to be preferable to a fixed latitude cutoff point. TC tracks were analyzed across seven TC basins, using a probabilistic clustering technique that is based on regression mixture models. The technique grouped TC tracks together based on their geographical location and shape of trajectory in five separate ‘‘cluster regions’’ around the globe. A mean trajectory was then regressed for each cluster that showed good agreement between the detected and observed tracks. Other track measures such as interannual TC days and translational speeds were also replicated to a satisfactory level, with TC days showing limited sensitivity to different latitude cutoff points. Successful validation in reanalysis data allows this model- and grid-resolution-independent TC tracking scheme to be applied to climate models with confidence in its ability to identify TC tracks in coarse-resolution climate models.
- Chand, Savin, Dowdy, Andrew, Bell, Samuel, Tory, Kevin
- Authors: Chand, Savin , Dowdy, Andrew , Bell, Samuel , Tory, Kevin
- Date: 2020
- Type: Text , Book chapter
- Relation: Springer Climate p. 251-273
- Full Text: false
- Reviewed:
- Description: Impacts of tropical cyclones in the South Pacific Island countries are of great significance. Now with the growing threats from human-induced climate change, the need for effective disaster risk management and adaptation strategies for these island countries is more important than before. In order to implement appropriate strategies, a comprehensive understanding of South Pacific tropical cyclone activity—and how it is likely to change as a result of human-induced climate change—is essential. While a number of past studies have examined various aspects of tropical cyclone activity in the South Pacific basin, a review that consolidates those studies with new information is essential. In this chapter, we first examine tropical cyclone data quality for the South Pacific basin and then review the robustness of the relationship between South Pacific tropical cyclones and drivers of natural climate variability. Note that an understanding of the limitations of the data quality is important to determine the extent of natural climate variability and signatures—if any—of human-induced climate change on tropical cyclones. We then examine the influence of climate change on tropical cyclones using up-to-date historical observations and climate model projections. © Springer Nature Switzerland AG 2020.
Western north pacific tropical cyclone tracks in cmip5 models : statistical assessment using a model-independent detection and tracking scheme
- Bell, Samuel, Chand, Savin, Camargo, Suzana, Tory, Kevin, Turville, Chris, Ye, Harvey
- Authors: Bell, Samuel , Chand, Savin , Camargo, Suzana , Tory, Kevin , Turville, Chris , Ye, Harvey
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Climate Vol. 32, no. 21 (2019), p. 7191-7208
- Full Text:
- Reviewed:
- Description: Past studies have shown that tropical cyclone (TC) projection results can be sensitive to different types of TC tracking schemes, and that the relative adjustments of detection criteria to accommodate different models may not necessarily provide a consistent platform for comparison of projection results. Here, future climate projections of TC activity in the western North Pacific basin (WNP, defined from 0°-50°NAND 100°E-180°) are assessed with a model-independent detection and tracking scheme. This scheme is applied to models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) forced under the historical and representative concentration pathway 8.5 (RCP8.5) conditions. TC tracks from the observed records and independent models are analyzed simultaneously with a curve-clustering algorithm, allowing observed and model tracks to be projected onto the same set of clusters (k =9). Four of the nine clusters were projected to undergo significant changes in TC frequency. Straight-moving TCs in the South China Sea were projected to significantly decrease. Projected increases in TC frequency were found poleward of 20°N and east of 160°E, consistent with changes in ascending motion, as well as vertical wind shear and relative humidity respectively. Projections of TC track exposure indicated significant reductions for southern China and the Philippines and significant increases for the Korean peninsula and Japan, although very few model TCs reached the latter subtropical regions in comparison to the observations. The use of a fundamentally different detection methodology that overcomes the detector/tracker bias gives increased certainty to projections as best as lowresolution simulations can offer. © 2019 American Meteorological Society.
- Authors: Bell, Samuel , Chand, Savin , Camargo, Suzana , Tory, Kevin , Turville, Chris , Ye, Harvey
- Date: 2019
- Type: Text , Journal article
- Relation: Journal of Climate Vol. 32, no. 21 (2019), p. 7191-7208
- Full Text:
- Reviewed:
- Description: Past studies have shown that tropical cyclone (TC) projection results can be sensitive to different types of TC tracking schemes, and that the relative adjustments of detection criteria to accommodate different models may not necessarily provide a consistent platform for comparison of projection results. Here, future climate projections of TC activity in the western North Pacific basin (WNP, defined from 0°-50°NAND 100°E-180°) are assessed with a model-independent detection and tracking scheme. This scheme is applied to models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) forced under the historical and representative concentration pathway 8.5 (RCP8.5) conditions. TC tracks from the observed records and independent models are analyzed simultaneously with a curve-clustering algorithm, allowing observed and model tracks to be projected onto the same set of clusters (k =9). Four of the nine clusters were projected to undergo significant changes in TC frequency. Straight-moving TCs in the South China Sea were projected to significantly decrease. Projected increases in TC frequency were found poleward of 20°N and east of 160°E, consistent with changes in ascending motion, as well as vertical wind shear and relative humidity respectively. Projections of TC track exposure indicated significant reductions for southern China and the Philippines and significant increases for the Korean peninsula and Japan, although very few model TCs reached the latter subtropical regions in comparison to the observations. The use of a fundamentally different detection methodology that overcomes the detector/tracker bias gives increased certainty to projections as best as lowresolution simulations can offer. © 2019 American Meteorological Society.
North Indian ocean tropical cyclone activity in CMIP5 experiments : future projections using a model-independent detection and tracking scheme
- Bell, Samuel, Chand, Savin, Tory, Kevin, Ye, Hua, Turville, Christopher
- Authors: Bell, Samuel , Chand, Savin , Tory, Kevin , Ye, Hua , Turville, Christopher
- Date: 2020
- Type: Text , Journal article
- Relation: International Journal of Climatology Vol. 40, no. 15 (2020), p. 6492-6505
- Full Text:
- Reviewed:
- Description: The sensitivity of tropical cyclone (TC) projection results to different models and the detection and tracking scheme used is well established. In this study, future climate projections of TC activity in the North Indian Ocean (NIO) are assessed with a model- and basin-independent detection and tracking scheme. The scheme is applied to selected models from the coupled model intercomparison project phase 5 (CMIP5) experiments forced under the historical and representative concentration pathway 8.5 (RCP8.5) conditions. Most models underestimated the frequency of early season (April–June) TCs and contained genesis biases equatorward of ~7.5°N in comparison to the historical records. TC tracks detected in reanalysis and model data were input to a clustering algorithm simultaneously, with two clusters in the Arabian Sea and two in the Bay of Bengal (k = 4). Projection results indicated a slight decrease of overall TC genesis frequency in the NIO, with an increase of TC genesis frequency in the Arabian Sea (30–64%) and a decrease in the Bay of Bengal (22–43%), consistent between clusters in each of these sub-regions. These changes were largely due to changes in the pre-monsoon season (April–June) where Bay of Bengal TCs significantly decreased, consistent with changes in vertical ascent. Northern Arabian Sea TCs significantly increased during the pre-monsoon season, consistent with changes in vertical wind shear and relative humidity. There was a projected increase of TC frequency in the post-monsoon season (October–December), consistent with changes in relative humidity and vertical ascent, although not all clusters followed this trend; noting a different response in the southern Bay of Bengal. In turn, these projections caused changes to the climate averaged TC track density, including a decrease (up to 2 TCs per decade) affecting the eastern coast of India and a small increase (up to 0.5 TCs per decade) affecting eastern Africa, Oman and Yemen. © 2020 Royal Meteorological Society
- Authors: Bell, Samuel , Chand, Savin , Tory, Kevin , Ye, Hua , Turville, Christopher
- Date: 2020
- Type: Text , Journal article
- Relation: International Journal of Climatology Vol. 40, no. 15 (2020), p. 6492-6505
- Full Text:
- Reviewed:
- Description: The sensitivity of tropical cyclone (TC) projection results to different models and the detection and tracking scheme used is well established. In this study, future climate projections of TC activity in the North Indian Ocean (NIO) are assessed with a model- and basin-independent detection and tracking scheme. The scheme is applied to selected models from the coupled model intercomparison project phase 5 (CMIP5) experiments forced under the historical and representative concentration pathway 8.5 (RCP8.5) conditions. Most models underestimated the frequency of early season (April–June) TCs and contained genesis biases equatorward of ~7.5°N in comparison to the historical records. TC tracks detected in reanalysis and model data were input to a clustering algorithm simultaneously, with two clusters in the Arabian Sea and two in the Bay of Bengal (k = 4). Projection results indicated a slight decrease of overall TC genesis frequency in the NIO, with an increase of TC genesis frequency in the Arabian Sea (30–64%) and a decrease in the Bay of Bengal (22–43%), consistent between clusters in each of these sub-regions. These changes were largely due to changes in the pre-monsoon season (April–June) where Bay of Bengal TCs significantly decreased, consistent with changes in vertical ascent. Northern Arabian Sea TCs significantly increased during the pre-monsoon season, consistent with changes in vertical wind shear and relative humidity. There was a projected increase of TC frequency in the post-monsoon season (October–December), consistent with changes in relative humidity and vertical ascent, although not all clusters followed this trend; noting a different response in the southern Bay of Bengal. In turn, these projections caused changes to the climate averaged TC track density, including a decrease (up to 2 TCs per decade) affecting the eastern coast of India and a small increase (up to 0.5 TCs per decade) affecting eastern Africa, Oman and Yemen. © 2020 Royal Meteorological Society
Projected changes in ENSO-driven regional tropical cyclone tracks
- Bell, Samuel, Chand, Savin, Turville, Christopher
- Authors: Bell, Samuel , Chand, Savin , Turville, Christopher
- Date: 2020
- Type: Text , Journal article
- Relation: Climate Dynamics Vol. 54, no. 3-4 (Feb 2020), p. 2533-2559
- Full Text:
- Reviewed:
- Description: Simulations and projections of the El Nino Southern Oscillation's (ENSO's) influence on TC track variability was analysed globally using Coupled Model Intercomparison project Phase 5 (CMIP5) models. The ability of these models to simulate the historical (1970-2000) ENSO-TC track relationship and inform us of the likely projected changes resulting from high carbon emissions (RCP8.5) in a climate projection (2070-2100) was determined through cluster analysis. The number of seasonal TC occurrences during traditional ENSO events ("El Nino" and "La Nina") in each cluster were used to determine whether each cluster was "El Nino dominant", "La Nina dominant" or "neither". Only seven out of a combined total of 28 clusters across all basins were found to disagree in terms of "ENSO dominance" between the observed records and historical model simulations. This suggests that models can simulate the ENSO and TC track relationship reasonably well. Under sustained high carbon emissions, La Nina TCs were projected to become dominant over El Nino TCs in the central South Indian Ocean ( 60-100 degrees E), the southern Bay of Bengal and over straight-moving TCs in the South China Sea. El Nino TCs were projected to increase and become dominant over La Nina TCs in a larger area of the western South Pacific ( 160 degrees E-165 degrees W) and central North Pacific ( 160 degrees E-145 degrees W) Oceans. Projections of track directions and lifetimes, while less robust, indicated that El Nino TCs would track westward more often in the Coral Sea (150-165 degrees E), while El Nino TCs that took an eastward track here would have longer lifetimes ( 3 days).
- Authors: Bell, Samuel , Chand, Savin , Turville, Christopher
- Date: 2020
- Type: Text , Journal article
- Relation: Climate Dynamics Vol. 54, no. 3-4 (Feb 2020), p. 2533-2559
- Full Text:
- Reviewed:
- Description: Simulations and projections of the El Nino Southern Oscillation's (ENSO's) influence on TC track variability was analysed globally using Coupled Model Intercomparison project Phase 5 (CMIP5) models. The ability of these models to simulate the historical (1970-2000) ENSO-TC track relationship and inform us of the likely projected changes resulting from high carbon emissions (RCP8.5) in a climate projection (2070-2100) was determined through cluster analysis. The number of seasonal TC occurrences during traditional ENSO events ("El Nino" and "La Nina") in each cluster were used to determine whether each cluster was "El Nino dominant", "La Nina dominant" or "neither". Only seven out of a combined total of 28 clusters across all basins were found to disagree in terms of "ENSO dominance" between the observed records and historical model simulations. This suggests that models can simulate the ENSO and TC track relationship reasonably well. Under sustained high carbon emissions, La Nina TCs were projected to become dominant over El Nino TCs in the central South Indian Ocean ( 60-100 degrees E), the southern Bay of Bengal and over straight-moving TCs in the South China Sea. El Nino TCs were projected to increase and become dominant over La Nina TCs in a larger area of the western South Pacific ( 160 degrees E-165 degrees W) and central North Pacific ( 160 degrees E-145 degrees W) Oceans. Projections of track directions and lifetimes, while less robust, indicated that El Nino TCs would track westward more often in the Coral Sea (150-165 degrees E), while El Nino TCs that took an eastward track here would have longer lifetimes ( 3 days).
Declining tropical cyclone frequency under global warming
- Chand, Savin, Walsh, Kevin, Camargo, Suzana, Kossin, James, Tory, Kevin, Wehner, Michael, Chan, Johnny, Klotzbach, Philip, Dowdy, Andrew, Bell, Samuel, Ramsay, Hamish, Murakami, Hiroyuki
- Authors: Chand, Savin , Walsh, Kevin , Camargo, Suzana , Kossin, James , Tory, Kevin , Wehner, Michael , Chan, Johnny , Klotzbach, Philip , Dowdy, Andrew , Bell, Samuel , Ramsay, Hamish , Murakami, Hiroyuki
- Date: 2022
- Type: Text , Journal article
- Relation: Nature Climate Change Vol. 12, no. 7 (2022), p. 655-661
- Full Text:
- Reviewed:
- Description: Assessing the role of anthropogenic warming from temporally inhomogeneous historical data in the presence of large natural variability is difficult and has caused conflicting conclusions on detection and attribution of tropical cyclone (TC) trends. Here, using a reconstructed long-term proxy of annual TC numbers together with high-resolution climate model experiments, we show robust declining trends in the annual number of TCs at global and regional scales during the twentieth century. The Twentieth Century Reanalysis (20CR) dataset is used for reconstruction because, compared with other reanalyses, it assimilates only sea-level pressure fields rather than utilize all available observations in the troposphere, making it less sensitive to temporal inhomogeneities in the observations. It can also capture TC signatures from the pre-satellite era reasonably well. The declining trends found are consistent with the twentieth century weakening of the Hadley and Walker circulations, which make conditions for TC formation less favourable. © 2022, The Author(s).
- Authors: Chand, Savin , Walsh, Kevin , Camargo, Suzana , Kossin, James , Tory, Kevin , Wehner, Michael , Chan, Johnny , Klotzbach, Philip , Dowdy, Andrew , Bell, Samuel , Ramsay, Hamish , Murakami, Hiroyuki
- Date: 2022
- Type: Text , Journal article
- Relation: Nature Climate Change Vol. 12, no. 7 (2022), p. 655-661
- Full Text:
- Reviewed:
- Description: Assessing the role of anthropogenic warming from temporally inhomogeneous historical data in the presence of large natural variability is difficult and has caused conflicting conclusions on detection and attribution of tropical cyclone (TC) trends. Here, using a reconstructed long-term proxy of annual TC numbers together with high-resolution climate model experiments, we show robust declining trends in the annual number of TCs at global and regional scales during the twentieth century. The Twentieth Century Reanalysis (20CR) dataset is used for reconstruction because, compared with other reanalyses, it assimilates only sea-level pressure fields rather than utilize all available observations in the troposphere, making it less sensitive to temporal inhomogeneities in the observations. It can also capture TC signatures from the pre-satellite era reasonably well. The declining trends found are consistent with the twentieth century weakening of the Hadley and Walker circulations, which make conditions for TC formation less favourable. © 2022, The Author(s).
Using historical tropical cyclone climate datasets to examine wind speed recurrence for coastal Australia
- Bell, Samuel, Dowdy, Andrew, Ramsay, H., Chand, Savin, Su, C., Ye, Harvey
- Authors: Bell, Samuel , Dowdy, Andrew , Ramsay, H. , Chand, Savin , Su, C. , Ye, Harvey
- Date: 2022
- Type: Text , Journal article
- Relation: Scientific Reports Vol. 12, no. 1 (2022), p.
- Full Text:
- Reviewed:
- Description: Likelihood estimates of extreme winds, including those from tropical cyclones (TCs) at certain locations are used to inform wind load standards for structural design. Here, wind speed average recurrence intervals (ARIs) determined from TC climate data dating back to the 1970s in two quantile–quantile adjusted reanalysis datasets (ERA5 and BARRA [1990]), and best-track observations for context, were compared with Standardized ARIs (AS/NZS) across seven tropical and two subtropical Australian inland coastal regions. The novelty of this work lies in determining TC-wind speed ARIs from a range of datasets that are not typically used to evaluate this metric. Inherent differences between the data used to determine the Standard ARIs (large sample size allow for larger extrapolations; GEV function) and TC data ARIs (smaller sample size and less certain data; the more asymptotic Lognormal/Weibull functions are used) led to the use of different extreme value functions. Results indicated that although these are two distinct ways of determining design wind speeds, when they are considered equivalent, there was a moderate reproduction of the ARI curves with respect to the Standard in both reanalysis datasets, suggesting that similar analyses using climate model products can provide useful information on these types of metrics with some caveats. Trends in TC wind strength affecting coastal Australia were also analyzed, indicating a potential slight downtrend in tropical West coast TC wind strength and slight uptrend for tropical East coast TC wind strength, noting considerable uncertainty given the short time period and limitations of data quality including over longer time periods. Such trends are not only limited to the relationship between TC intensity and anthropogenic warming, but also to regional changes in TC frequency and track direction. This could lead to significant trends emerging in regional Australian TC wind gust strength before several decades of warming have occurred. It is hoped that climate models can provide both longer-term and a more homogenous base for these types of evaluations and subsequent projections with respect to climate change simulations. © 2022, Crown.
- Authors: Bell, Samuel , Dowdy, Andrew , Ramsay, H. , Chand, Savin , Su, C. , Ye, Harvey
- Date: 2022
- Type: Text , Journal article
- Relation: Scientific Reports Vol. 12, no. 1 (2022), p.
- Full Text:
- Reviewed:
- Description: Likelihood estimates of extreme winds, including those from tropical cyclones (TCs) at certain locations are used to inform wind load standards for structural design. Here, wind speed average recurrence intervals (ARIs) determined from TC climate data dating back to the 1970s in two quantile–quantile adjusted reanalysis datasets (ERA5 and BARRA [1990]), and best-track observations for context, were compared with Standardized ARIs (AS/NZS) across seven tropical and two subtropical Australian inland coastal regions. The novelty of this work lies in determining TC-wind speed ARIs from a range of datasets that are not typically used to evaluate this metric. Inherent differences between the data used to determine the Standard ARIs (large sample size allow for larger extrapolations; GEV function) and TC data ARIs (smaller sample size and less certain data; the more asymptotic Lognormal/Weibull functions are used) led to the use of different extreme value functions. Results indicated that although these are two distinct ways of determining design wind speeds, when they are considered equivalent, there was a moderate reproduction of the ARI curves with respect to the Standard in both reanalysis datasets, suggesting that similar analyses using climate model products can provide useful information on these types of metrics with some caveats. Trends in TC wind strength affecting coastal Australia were also analyzed, indicating a potential slight downtrend in tropical West coast TC wind strength and slight uptrend for tropical East coast TC wind strength, noting considerable uncertainty given the short time period and limitations of data quality including over longer time periods. Such trends are not only limited to the relationship between TC intensity and anthropogenic warming, but also to regional changes in TC frequency and track direction. This could lead to significant trends emerging in regional Australian TC wind gust strength before several decades of warming have occurred. It is hoped that climate models can provide both longer-term and a more homogenous base for these types of evaluations and subsequent projections with respect to climate change simulations. © 2022, Crown.
- «
- ‹
- 1
- ›
- »