A long-term habitat fragmentation experiment leads to morphological change in a species of carabid beetle
- Evans, Maldwyn, Banks, Sam, Barton, Philip, Davies, Kendi, Driscoll, Don
- Authors: Evans, Maldwyn , Banks, Sam , Barton, Philip , Davies, Kendi , Driscoll, Don
- Date: 2018
- Type: Text , Journal article
- Relation: Ecological Entomology Vol. 43, no. 3 (2018), p. 282-293
- Full Text:
- Reviewed:
- Description: 1. Habitat fragmentation and transformation are key drivers of species declines in landscapes. Most of the current understanding of species' responses to environmental change originates from studies of populations and communities. However, phenotypic variation offers another key aspect of species responses and could provide additional insights into the functional drivers of population change. 2. The goal of this study was to address this gap by exploring the morphological changes of a species of carabid beetle (Notonomus resplendens) with a known population response to the Wog Wog Habitat Fragmentation Experiment in Australia. We measured morphological traits associated with body size, head width, and dispersal ability. We quantified patterns of morphological variation over time and between native Eucalyptus forest fragments and the surrounding pine plantation matrix and the continuous intact native Eucalyptus forest controls. 3. We found sexually dimorphic morphological changes in response to the experimental treatments. Males increased in size, had larger legs and had smaller interocular widths in the matrix in both the short and long terms. Conversely, females became comparatively smaller and had increased interocular widths in the same treatments. Effects in the fragments were similar to those in the matrix, but exhibited more uncertainty. 4. Our results demonstrate that species can show morphological change in response to environmental change over very short time periods. We demonstrate that using both population and morphological data allows stronger inferences about the mechanisms behind species responses to environmental change. © 2017 The Royal Entomological Society
- Authors: Evans, Maldwyn , Banks, Sam , Barton, Philip , Davies, Kendi , Driscoll, Don
- Date: 2018
- Type: Text , Journal article
- Relation: Ecological Entomology Vol. 43, no. 3 (2018), p. 282-293
- Full Text:
- Reviewed:
- Description: 1. Habitat fragmentation and transformation are key drivers of species declines in landscapes. Most of the current understanding of species' responses to environmental change originates from studies of populations and communities. However, phenotypic variation offers another key aspect of species responses and could provide additional insights into the functional drivers of population change. 2. The goal of this study was to address this gap by exploring the morphological changes of a species of carabid beetle (Notonomus resplendens) with a known population response to the Wog Wog Habitat Fragmentation Experiment in Australia. We measured morphological traits associated with body size, head width, and dispersal ability. We quantified patterns of morphological variation over time and between native Eucalyptus forest fragments and the surrounding pine plantation matrix and the continuous intact native Eucalyptus forest controls. 3. We found sexually dimorphic morphological changes in response to the experimental treatments. Males increased in size, had larger legs and had smaller interocular widths in the matrix in both the short and long terms. Conversely, females became comparatively smaller and had increased interocular widths in the same treatments. Effects in the fragments were similar to those in the matrix, but exhibited more uncertainty. 4. Our results demonstrate that species can show morphological change in response to environmental change over very short time periods. We demonstrate that using both population and morphological data allows stronger inferences about the mechanisms behind species responses to environmental change. © 2017 The Royal Entomological Society
Ant community responses to farmland use and revegetation in a fragmented agricultural landscape
- Ng, Katherine, Nowrouzi, Somayeh, Staunton, Kyran, Barton, Philip, Driscoll, Don
- Authors: Ng, Katherine , Nowrouzi, Somayeh , Staunton, Kyran , Barton, Philip , Driscoll, Don
- Date: 2021
- Type: Text , Journal article
- Relation: Agriculture Ecosystems & Environment Vol. 311, no. (May 2021), p. 8
- Full Text: false
- Reviewed:
- Description: Recent alarming losses of insects from agricultural landscapes in multiple countries around the world have brought into sharp focus the urgent need to identify ways to manage these landscapes to avoid further biodiversity decline. Identifying the drivers of insect declines, such as land use change, is critical to this effort. We examined ant communities at the interface between remnant vegetation patches and three adjoining farmland types (wheat crop, rested from cropping and restoration plantings) in a fragmented landscape in temperate Australia. We asked: do ant communities and occurrence of individual species differ between remnant patches and farmlands with more intensive farmland use (restoration plantings < rested farmlands < wheat crop)? We recorded 13,283 ants belonging to 102 species from 30 genera. Excluding 21 singletons, 27 species only occurred in remnant patches compared to ten species found only in farmlands. Ant community composition in wheat crop and rested farmlands significantly differed from their adjacent remnant patches and were more homogeneous. In contrast, ant communities from restoration plantings in farmland were not significantly different in composition from those in the adjacent remnant patch. The large, aggressive Australian meat ant (Iridomyrmex purpureus) showed significantly higher occurrence in the remnant patch than all farmland types, and we suggest that the absence of this strongly interacting species from farmlands may have contributed to biotic homogenisation. Our findings show that native vegetation provides crucial habitat resources for many ant species that are not provided by farmlands, and native plantings can, in some cases, ameliorate negative effects of farmland clearing over relatively short time scales (<7 years). Agricultural intensification that involves loss of remnant native vegetation or reduced revegetation will contribute to ongoing losses and changes to ant biodiversity in farming landscapes. However, replanting native vegetation can lead to rapid restoration, signifying a possible simple remedy to insect declines.
Avian functional responses to landscape recovery
- Ikin, Karen, Barton, Philip, Blanchard, Wade, Crane, Mason, Stein, John, Lindenmayer, David
- Authors: Ikin, Karen , Barton, Philip , Blanchard, Wade , Crane, Mason , Stein, John , Lindenmayer, David
- Date: 2019
- Type: Text , Journal article
- Relation: Proceedings of the Royal Society B: Biological Sciences Vol. 286, no. 1901 (2019), p.
- Full Text:
- Reviewed:
- Description: Restoring native vegetation in agricultural landscapes can reverse biodiversity declines via species gains. Depending on whether the traits of colonizers are complementary or redundant to the assemblage, species gains can increase the efficiency or stability of ecological functions, yet detecting these processes is not straightforward.We propose a new conceptual model to identify potential changes to complementarity and redundancy in response to landscape change via relative changes in taxonomic and functional richness.We applied our model to a 14-year study of birds across an extensive agricultural region. We found compelling evidence that high levels of landscape-scale tree cover and patch-scale restoration were significant determinants of functional change in the overall bird assemblage. This was true for every one of the six traits investigated individually, indicating increased trait-specific functional complementarity and redundancy in the assemblage. Applying our conceptual model to species diversity data provided new insights into how the return of vertebrates to restored landscapes may affect ecological function. © 2019 The Author(s).
- Authors: Ikin, Karen , Barton, Philip , Blanchard, Wade , Crane, Mason , Stein, John , Lindenmayer, David
- Date: 2019
- Type: Text , Journal article
- Relation: Proceedings of the Royal Society B: Biological Sciences Vol. 286, no. 1901 (2019), p.
- Full Text:
- Reviewed:
- Description: Restoring native vegetation in agricultural landscapes can reverse biodiversity declines via species gains. Depending on whether the traits of colonizers are complementary or redundant to the assemblage, species gains can increase the efficiency or stability of ecological functions, yet detecting these processes is not straightforward.We propose a new conceptual model to identify potential changes to complementarity and redundancy in response to landscape change via relative changes in taxonomic and functional richness.We applied our model to a 14-year study of birds across an extensive agricultural region. We found compelling evidence that high levels of landscape-scale tree cover and patch-scale restoration were significant determinants of functional change in the overall bird assemblage. This was true for every one of the six traits investigated individually, indicating increased trait-specific functional complementarity and redundancy in the assemblage. Applying our conceptual model to species diversity data provided new insights into how the return of vertebrates to restored landscapes may affect ecological function. © 2019 The Author(s).
- Evans, Maldwyn, Cunningham, Saul, Gibb, Heloise, Manning, Adrian, Barton, Philip
- Authors: Evans, Maldwyn , Cunningham, Saul , Gibb, Heloise , Manning, Adrian , Barton, Philip
- Date: 2019
- Type: Text , Journal article
- Relation: Ecological Indicators Vol. 104, no. (2019), p. 209-218
- Full Text: false
- Reviewed:
- Description: Ecosystem restoration can play a vital role in conserving biodiversity, but its effectiveness can be difficult to assess for hyperdiverse biota such as insects. Species traits of insects can be used to understand their functional responses to restoration, but their use often requires considerable effort, and few studies have examined what additional insight can be gained from this approach. We used a spatially and temporally controlled restoration experiment to examine beetle species, grouped by flight ability, family membership and feeding guild, as indicators of ecosystem functional change. We tested for the effects of reduced vertebrate grazing on beetle assemblages sampled from two different microhabitats (next to log and in open ground)one year prior and two years after a vertebrate grazing treatment was applied. We compared the responses of the different beetle functional groupings, and then related these to the effort involved in employing these indicators. We found that beetle species traits gave several functional insights into their responses to reduced grazing, including responses to changes in vegetation structure and biomass. Species richness indicators and abundance indicators of beetle functional groups showed similar responses in many cases, whereas biomass indicators gave additional insights related to the extra biomass of vegetation and detritus resulting from the reduction in grazing. We found that most results were revealed by using family groups as indicators for functional change. This is because the traits that often define beetle families, such as size, flight ability and feeding guilds each have distinctive functional roles, allowing a link from family to function, and supporting the idea that phylogeny is often a useful shortcut to species ecology. We conclude that in our study system, the least-cost approach to identifying functional responses of beetles to reduced vertebrate grazing, and possibly other restoration actions, is to use abundance indicators of the most common family groups. © 2019 Elsevier Ltd
- Ng, Katherine, Barton, Philip, Macfadyen, Sarina, Lindenmayer, David, Driscoll, Don
- Authors: Ng, Katherine , Barton, Philip , Macfadyen, Sarina , Lindenmayer, David , Driscoll, Don
- Date: 2018
- Type: Text , Journal article
- Relation: Landscape Ecology Vol. 33, no. 1 (2018), p. 109-125
- Full Text: false
- Reviewed:
- Description: Context: Farming practices influence the degree of contrast between adjoining habitats, with consequences for biodiversity and species movement. Little is known, however, on insect community responses to different kinds of edges over time, and the extent of cross-habitat movement in agricultural landscapes. Objective: To determine temporal changes in beetle responses to different farmland-woodland edges, and document cross-habitat movement. Methods: We examined species richness, abundance, and movement across edges between remnant woodlands and four farmland uses (plantings, fallow, annual crops, woody debris applied over crops post-harvest) in southeastern Australia. We used directional pitfall traps to infer movement, and sampled at edges, and 20 and 200 m on both sides of edges, during spring and summer. Results: Detritivore and predator abundance varied between seasons across the edge between woodlands and all farmlands, but seasonal differences were weaker for fallow-woodland and woody debris-woodland edges. Detritivores moved from farmlands towards woodlands, but not across fallow-woodlands and woody debris-woodlands edges during summer. During summer, predators showed short-range movement towards edges from all farmlands except plantings, and towards woody debris from woodlands. Edges showed temporally stable predator richness and higher herbivore richness than adjoining habitats. Conclusions: Farmland use and season interactively affect beetle abundance across farmland-woodland edges. Woody debris can reduce seasonal fluctuations in beetle edge responses and increase permeability for cross-habitat movement, while plantings provide habitat during summer. Edges provide important resources for beetles in adjoining habitats, however, seasonal movement of predators specifically into edges may affect prey assemblages—a link requiring further study. © 2017, Springer Science+Business Media B.V.
Birds as surrogates for mammals and reptiles: Are patterns of cross-taxonomic associations stable over time in a human-modified landscape?
- Yong, Ding, Barton, Philip, Okada, Sachiko, Crane, Mason, Lindenmayer, David
- Authors: Yong, Ding , Barton, Philip , Okada, Sachiko , Crane, Mason , Lindenmayer, David
- Date: 2016
- Type: Text , Journal article
- Relation: Ecological Indicators Vol. 69, no. (2016), p. 152-164
- Full Text:
- Reviewed:
- Description: Cross-taxonomic surrogates can be feasible alternatives to direct measurements of biodiversity in conservation if validated with robust data and used with explicit goals. However, few studies of cross-taxonomic surrogates have examined how temporal changes in composition or richness in one taxon can drive variation in concordant patterns of diversity in another taxon, particularly in a dynamic and heavily modified landscape. We examined this problem by assessing changes in cross-taxonomic associations over time between the surrogate (birds) and target vertebrate taxa (mammals, reptiles) that demand high sampling effort, in a heterogeneous mosaic landscape comprising pine monoculture, eucalypt woodland remnants and agricultural land. Focussing on four study years (1999, 2001, 2011, 2013) from a dataset collected over 15 years, we: (1) investigated temporal changes in cross-taxonomic congruency among three animal taxa (2) explored how temporal variation in composition and species richness of each taxon might account for variation in cross-taxonomic congruency, and (3) identified habitat structural variables that are strongly correlated with species composition of each taxon. We found the strength of cross-taxonomic congruency varied between taxa in response to both landscape context and over time. Among the three taxa, overall correlations were weak but were consistently positive and strongest between birds and mammals, while correlations involving reptiles were usually weak and negative. We also found that stronger species richness and composition correlations between birds and mammals were not only more prevalent in woodland remnants in the agricultural matrix, but they also increased in strength over time. Temporal shifts in species composition differed in rate and extent among the taxa even though these shifts were significant over time, while important habitat structural correlates were seldom shared across taxa. Our study highlights the role of the landscape matrix and time in shaping animal communities and the resulting cross-taxonomic associations in the woodland remnants, especially after a major perturbation event (i.e. plantation establishment). In such dynamic landscapes, differing and taxon-specific shifts in species diversity over time can influence the strength, direction and consistency of cross-taxonomic correlations, therefore posing a 'temporal' problem for the use of surrogates like birds in monitoring and assessment of biodiversity, and conservation management practices in general. © 2016 Elsevier Ltd. All rights reserved.
- Authors: Yong, Ding , Barton, Philip , Okada, Sachiko , Crane, Mason , Lindenmayer, David
- Date: 2016
- Type: Text , Journal article
- Relation: Ecological Indicators Vol. 69, no. (2016), p. 152-164
- Full Text:
- Reviewed:
- Description: Cross-taxonomic surrogates can be feasible alternatives to direct measurements of biodiversity in conservation if validated with robust data and used with explicit goals. However, few studies of cross-taxonomic surrogates have examined how temporal changes in composition or richness in one taxon can drive variation in concordant patterns of diversity in another taxon, particularly in a dynamic and heavily modified landscape. We examined this problem by assessing changes in cross-taxonomic associations over time between the surrogate (birds) and target vertebrate taxa (mammals, reptiles) that demand high sampling effort, in a heterogeneous mosaic landscape comprising pine monoculture, eucalypt woodland remnants and agricultural land. Focussing on four study years (1999, 2001, 2011, 2013) from a dataset collected over 15 years, we: (1) investigated temporal changes in cross-taxonomic congruency among three animal taxa (2) explored how temporal variation in composition and species richness of each taxon might account for variation in cross-taxonomic congruency, and (3) identified habitat structural variables that are strongly correlated with species composition of each taxon. We found the strength of cross-taxonomic congruency varied between taxa in response to both landscape context and over time. Among the three taxa, overall correlations were weak but were consistently positive and strongest between birds and mammals, while correlations involving reptiles were usually weak and negative. We also found that stronger species richness and composition correlations between birds and mammals were not only more prevalent in woodland remnants in the agricultural matrix, but they also increased in strength over time. Temporal shifts in species composition differed in rate and extent among the taxa even though these shifts were significant over time, while important habitat structural correlates were seldom shared across taxa. Our study highlights the role of the landscape matrix and time in shaping animal communities and the resulting cross-taxonomic associations in the woodland remnants, especially after a major perturbation event (i.e. plantation establishment). In such dynamic landscapes, differing and taxon-specific shifts in species diversity over time can influence the strength, direction and consistency of cross-taxonomic correlations, therefore posing a 'temporal' problem for the use of surrogates like birds in monitoring and assessment of biodiversity, and conservation management practices in general. © 2016 Elsevier Ltd. All rights reserved.
- Barton, Philip, Bump, Joseph
- Authors: Barton, Philip , Bump, Joseph
- Date: 2019
- Type: Text , Book chapter
- Relation: Carrion Ecology and Management p. 101-124
- Full Text: false
- Reviewed:
Conservation conundrums and the challenges of managing unexplained declines of multiple species
- Lindenmayer, David, Wood, Jeff, MacGregor, Christopher, Foster, Claire, Barton, Philip
- Authors: Lindenmayer, David , Wood, Jeff , MacGregor, Christopher , Foster, Claire , Barton, Philip
- Date: 2018
- Type: Text , Journal article
- Relation: Biological Conservation Vol. 221, no. (2018), p. 279-292
- Full Text:
- Reviewed:
- Description: The conventional approach to conserving threatened biota is to identify drivers of decline, instigate actions to mitigate threatening processes, and monitor interventions to test their effectiveness and ensure target species recover. In Australia, predation by introduced predators is a threatening process for many native mammals. Here we report the results of a 15 year monitoring study in an iconic Australian reserve, Booderee National Park, where exotic Red Fox (Vulpes vulpes) populations have been controlled through an intensive poison baiting program since 2003. Unexpectedly, we documented the collapse of native mammal fauna during this period, including fully arboreal species that should be largely unaffected by fox predation – such as the nationally Vulnerable Greater Glider (Petauroides volans) and Common Ringtail Possum (Pseudocheirus peregrinus). We used path analysis to explore potential causes of these unexpected declines. We found no compelling evidence to support hypotheses that competition with increasing native species, native predator release, or increases in native herbivores underpinned mammal declines. Beyond the path analysis, data from other studies completed both inside Booderee National Park and outside (where intensive fox baiting does not occur yet depleted fauna species remain), allowed us to rule out several drivers of change. The temporal declines we documented for arboreal marsupials were not anticipated nor explained by any clear mechanism. We propose the use of experimentally-guided reintroductions and translocations to: (1) restore empty niches such as the currently vacant apex mammal predator niche, (2) reconstruct the now depleted arboreal marsupial guild, and (3) further test key hypotheses associated with mammal decline. We also suggest that given the potential for perverse outcomes following large-scale management interventions (even those where there is high confidence of success), wildlife managers should consider maintaining reference areas (where there is no management intervention). Finally, as the declines we documented were unexpected and rapid, there is a clear need to develop more sensitive early warning signals to alert conservation managers to impending problems, allowing them to alter management regimes before major declines occur. © 2018 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton is provided in this record**
- Authors: Lindenmayer, David , Wood, Jeff , MacGregor, Christopher , Foster, Claire , Barton, Philip
- Date: 2018
- Type: Text , Journal article
- Relation: Biological Conservation Vol. 221, no. (2018), p. 279-292
- Full Text:
- Reviewed:
- Description: The conventional approach to conserving threatened biota is to identify drivers of decline, instigate actions to mitigate threatening processes, and monitor interventions to test their effectiveness and ensure target species recover. In Australia, predation by introduced predators is a threatening process for many native mammals. Here we report the results of a 15 year monitoring study in an iconic Australian reserve, Booderee National Park, where exotic Red Fox (Vulpes vulpes) populations have been controlled through an intensive poison baiting program since 2003. Unexpectedly, we documented the collapse of native mammal fauna during this period, including fully arboreal species that should be largely unaffected by fox predation – such as the nationally Vulnerable Greater Glider (Petauroides volans) and Common Ringtail Possum (Pseudocheirus peregrinus). We used path analysis to explore potential causes of these unexpected declines. We found no compelling evidence to support hypotheses that competition with increasing native species, native predator release, or increases in native herbivores underpinned mammal declines. Beyond the path analysis, data from other studies completed both inside Booderee National Park and outside (where intensive fox baiting does not occur yet depleted fauna species remain), allowed us to rule out several drivers of change. The temporal declines we documented for arboreal marsupials were not anticipated nor explained by any clear mechanism. We propose the use of experimentally-guided reintroductions and translocations to: (1) restore empty niches such as the currently vacant apex mammal predator niche, (2) reconstruct the now depleted arboreal marsupial guild, and (3) further test key hypotheses associated with mammal decline. We also suggest that given the potential for perverse outcomes following large-scale management interventions (even those where there is high confidence of success), wildlife managers should consider maintaining reference areas (where there is no management intervention). Finally, as the declines we documented were unexpected and rapid, there is a clear need to develop more sensitive early warning signals to alert conservation managers to impending problems, allowing them to alter management regimes before major declines occur. © 2018 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton is provided in this record**
Contrasting beetle assemblage responses to cultivated farmlands and native woodlands in a dynamic agricultural landscape
- Ng, Katherina, Driscoll, Don, MacFadyen, Sarina, Barton, Philip, McIntyre, Sue, Lindenmayer, David
- Authors: Ng, Katherina , Driscoll, Don , MacFadyen, Sarina , Barton, Philip , McIntyre, Sue , Lindenmayer, David
- Date: 2017
- Type: Text , Journal article
- Relation: Ecosphere Vol. 8, no. 12 (2017), p.
- Full Text:
- Reviewed:
- Description: There is an urgent need to identify ways of managing agricultural landscapes for biodiversity conservation without reducing food production. Farming practices that consider spatiooral heterogeneity of farm fields may be a feasible alternative to large-scale revegetation of farmlands for maintaining arthropod biodiversity and their important ecological function. We examined seasonal differences in beetle assemblages in woodland remnants and four adjoining farmland uses in a highly modified agricultural landscape in southeastern Australia. The farmland uses were crops, fallows, and two restoration treatments (fine woody debris applied over harvested crop fields, and restoration plantings). Unexpectedly, overall species richness was significantly lower in remnants than in adjacent farmlands. Remnants and farmlands supported significantly different assemblages, with a third of species found in both habitats. Abundance responses were taxon-specific and influenced by interactions between land use and season. In particular, predator abundance was significantly higher in plantings and fallows during spring compared to summer. Detritivore abundance was significantly higher in the woody debris compared to the adjacent remnants. Herbivore abundance did not differ between remnants and farmlands over time. Complex responses provide strong support for a mosaic of land uses to effectively conserve different beetle groups. Species richness results suggest that further agricultural intensification, in farm fields and through the removal of remnant vegetation, risks reducing beetle diversity in this region. Maintaining farmland heterogeneity with a mix of low-intensity land uses, such as conservation tillage, crop-fallow rotation, restoration plantings, and the novel application of fine woody debris over cultivated fields, may provide seasonal refuge and resources for beetles. © 2017 Ng et al.
- Authors: Ng, Katherina , Driscoll, Don , MacFadyen, Sarina , Barton, Philip , McIntyre, Sue , Lindenmayer, David
- Date: 2017
- Type: Text , Journal article
- Relation: Ecosphere Vol. 8, no. 12 (2017), p.
- Full Text:
- Reviewed:
- Description: There is an urgent need to identify ways of managing agricultural landscapes for biodiversity conservation without reducing food production. Farming practices that consider spatiooral heterogeneity of farm fields may be a feasible alternative to large-scale revegetation of farmlands for maintaining arthropod biodiversity and their important ecological function. We examined seasonal differences in beetle assemblages in woodland remnants and four adjoining farmland uses in a highly modified agricultural landscape in southeastern Australia. The farmland uses were crops, fallows, and two restoration treatments (fine woody debris applied over harvested crop fields, and restoration plantings). Unexpectedly, overall species richness was significantly lower in remnants than in adjacent farmlands. Remnants and farmlands supported significantly different assemblages, with a third of species found in both habitats. Abundance responses were taxon-specific and influenced by interactions between land use and season. In particular, predator abundance was significantly higher in plantings and fallows during spring compared to summer. Detritivore abundance was significantly higher in the woody debris compared to the adjacent remnants. Herbivore abundance did not differ between remnants and farmlands over time. Complex responses provide strong support for a mosaic of land uses to effectively conserve different beetle groups. Species richness results suggest that further agricultural intensification, in farm fields and through the removal of remnant vegetation, risks reducing beetle diversity in this region. Maintaining farmland heterogeneity with a mix of low-intensity land uses, such as conservation tillage, crop-fallow rotation, restoration plantings, and the novel application of fine woody debris over cultivated fields, may provide seasonal refuge and resources for beetles. © 2017 Ng et al.
- Neilan, Wendy, Barton, Philip, McAlpine, Clive, Wood, Jeffrey, Lindenmayer, David
- Authors: Neilan, Wendy , Barton, Philip , McAlpine, Clive , Wood, Jeffrey , Lindenmayer, David
- Date: 2019
- Type: Text , Journal article
- Relation: Ecography Vol. 42, no. 1 (2019), p. 173-186
- Full Text: false
- Reviewed:
- Description: Habitat loss and fragmentation are key processes causing biodiversity loss in human-modified landscapes. Knowledge of these processes has largely been derived from measuring biodiversity at the scale of ‘within-habitat’ fragments with the surrounding landscape considered as matrix. Yet, the loss of variation in species assemblages ‘among’ habitat fragments (landscape-scale) may be as important a driver of biodiversity loss as the loss of diversity ‘within’ habitat fragments (local-scale). We tested the hypothesis that heterogeneity in vegetation cover is important for maintaining alpha and beta diversity in human-modified landscapes. We surveyed bird assemblages in eighty 300-m-long transects nested within twenty 1-km 2 vegetation ‘mosaics’, with mosaics assigned to four categories defined by the cover extent and configuration of native eucalypt forest and exotic pine plantation. We examined bird assemblages at two spatial scales: 1) within and among transects, and 2) within and among mosaics. Alpha diversity was the mean species diversity within-transects or within-mosaics and beta diversity quantified the effective number of compositionally distinct transects or mosaics. We found that within-transect alpha diversity was highest in vegetation mosaics defined by continuous eucalypt forest, lowest in mosaics of continuous pine plantation, and at intermediate levels in mosaics containing eucalypt patches in a pine matrix. We found that eucalypt mosaics had lower beta diversity than other mosaic types when ignoring relative abundances, but had similar or higher beta diversity when weighting with species abundances. Mosaics containing both pine and eucalypt forest differed in their bird compositional variation among transects, despite sharing a similar suite of species. This configuration effect at the mosaic scale reflected differences in vegetation composition among transects. Maintaining heterogeneity in vegetation cover could help to maintain variation among bird assemblages across landscapes, thus partially offsetting local-scale diversity losses due to fragmentation. Critical to this is the retention of remnant native vegetation. © 2018 The Authors
- Dawson, Blake, Barton, Philip, Wallman, James
- Authors: Dawson, Blake , Barton, Philip , Wallman, James
- Date: 2020
- Type: Text , Journal article
- Relation: Forensic Science International Vol. 316, no. (2020), p.
- Full Text: false
- Reviewed:
- Description: Non-human vertebrate animals, primarily domestic pigs, have been widely used in forensic science research as analogues for humans due to ethical and logistical constraints. Yet the suitability of pigs to mimic human decomposition and entomological patterns remains largely untested, and explicit comparative research in this area is lacking. We compared the decomposition rates and insect communities found at pig and human remains during summer and winter at the Australian Facility for Taphonomic Experimental Research (AFTER). Pigs decomposed faster than humans, with pigs entering active decay earlier in both summer and winter, and humans undergoing desiccation rather than skeletonisation. There was also a delay in the colonisation of humans by both flies and beetles. Species richness of these necrophagous taxa was between two and five times higher during the first two weeks of decomposition on pigs compared to humans during both summer and winter. Insect species composition was also significantly different between pigs and humans in each season. We interpret our findings to mean that the difference between humans and pigs, such as their mass, diet, medical history, or their microbiomes, might be causing different decomposition processes and altered timing or production of chemical cues for insect colonisation. Although preliminary, our results suggest that pigs might not be accurate substitutes for humans in particular fields of taphonomy and forensic entomology. Our findings also have broader implications for the reliability of forensic studies using pigs as models for humans, and highlight the need to recognise intrinsic differences between animal models and humans. © 2020 Elsevier B.V.
- Description: This work was supported in part by the Australian Research Council ( LE150100015 ), as well as by a SMAH Small Project Grant ( University of Wollongong ).
Convergence of social strategies in carrion breeding insects
- Charabidze, Damien, Trumbo, Stephen, Grzywacz, Andrze, Costa, James, Barton, Philip
- Authors: Charabidze, Damien , Trumbo, Stephen , Grzywacz, Andrze , Costa, James , Barton, Philip
- Date: 2021
- Type: Text , Journal article , Review
- Relation: BioScience Vol. 71, no. 10 (2021), p. 1028-1037
- Full Text: false
- Reviewed:
- Description: Carrion is a highly ephemeral and nutrient rich resource, characterized by extreme biotic and abiotic stressors. We hypothesized that specific constraints of the carrion ecosystem, and especially its nutrient richness, ephemerality, and competition with microbes, have promoted the evolution of social behaviors in necrophagous insects. We show that group living is prevalent among early succession carrion breeding insects, suggesting that this trait has emerged as an adaptation to facilitate survival in the highly competitive environment of fresh carrion. We then highlight how developmental niche construction allows larvae to compete with microbes, efficiently feed on fresh cadavers, and rapidly reach maturity. We observed that larval societies and parental care are two different strategies responding to similar competitive and environmental constraints. We conclude that intra and interspecific competition on carrion are mitigated by social behavior. © 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the American Institute of Biological Sciences. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
Cross-taxonomic surrogates for biodiversity conservation in human-modified landscapes – A multi-taxa approach
- Yong, Ding, Barton, Philip, Ikin, Karen, Evans, Maldwyn, Crane, Mason
- Authors: Yong, Ding , Barton, Philip , Ikin, Karen , Evans, Maldwyn , Crane, Mason
- Date: 2018
- Type: Text , Journal article
- Relation: Biological Conservation Vol. 224, no. (2018), p. 336-346
- Full Text:
- Reviewed:
- Description: Cross-taxonomic surrogates are often used in conservation planning because inventorying large suites of taxa is either not feasible or too costly. However, cross-taxonomic surrogates are seldom tested rigorously using both correlational and representation-based approaches at the spatial scales at which conservation management occurs. Here, we evaluated the effectiveness of five ecologically contrasting taxa (birds, herpetofauna, wild bees, beetles, trees) as cross-taxonomic surrogates in native woodland patches within a heavily modified, farming and plantation-dominated landscape. We first compared species richness and compositional heterogeneity across taxa before testing for cross-taxonomic congruence using a correlative approach. We then quantified how well each taxon incidentally represented other taxa in their best patch sets, and the costs of doing so using a complementarity-based approach. We found significant pairwise associations between some taxa (birds, bees), but no single taxon was strongly correlated with all other taxa. Woodland patch sets prioritised for beetles represented other taxa best, followed by birds, but were the costliest and required the largest amount of woodland. This contrasted with patch sets prioritised for wild bees or herpetofauna, which achieved higher representation of other taxa at lower costs. Our study highlighted the influence of taxon-specific patterns of diversity and heterogeneity on how remnant vegetation patches should be prioritised for conservation, a consideration not immediately obvious in correlative analyses of surrogacy. Second, taxa that are not the most speciose (e.g. wild bees) can be efficient surrogates, achieving higher incidental representation for other taxa at lower costs. Thus, while species-rich taxa are ideal as surrogates for prioritising conservation, conservation planners should not overlook the potential of less speciose taxa such as bees, while considering the cost-effectiveness of surveying multiple different taxa. © 2018. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton" is provided in this record**
- Authors: Yong, Ding , Barton, Philip , Ikin, Karen , Evans, Maldwyn , Crane, Mason
- Date: 2018
- Type: Text , Journal article
- Relation: Biological Conservation Vol. 224, no. (2018), p. 336-346
- Full Text:
- Reviewed:
- Description: Cross-taxonomic surrogates are often used in conservation planning because inventorying large suites of taxa is either not feasible or too costly. However, cross-taxonomic surrogates are seldom tested rigorously using both correlational and representation-based approaches at the spatial scales at which conservation management occurs. Here, we evaluated the effectiveness of five ecologically contrasting taxa (birds, herpetofauna, wild bees, beetles, trees) as cross-taxonomic surrogates in native woodland patches within a heavily modified, farming and plantation-dominated landscape. We first compared species richness and compositional heterogeneity across taxa before testing for cross-taxonomic congruence using a correlative approach. We then quantified how well each taxon incidentally represented other taxa in their best patch sets, and the costs of doing so using a complementarity-based approach. We found significant pairwise associations between some taxa (birds, bees), but no single taxon was strongly correlated with all other taxa. Woodland patch sets prioritised for beetles represented other taxa best, followed by birds, but were the costliest and required the largest amount of woodland. This contrasted with patch sets prioritised for wild bees or herpetofauna, which achieved higher representation of other taxa at lower costs. Our study highlighted the influence of taxon-specific patterns of diversity and heterogeneity on how remnant vegetation patches should be prioritised for conservation, a consideration not immediately obvious in correlative analyses of surrogacy. Second, taxa that are not the most speciose (e.g. wild bees) can be efficient surrogates, achieving higher incidental representation for other taxa at lower costs. Thus, while species-rich taxa are ideal as surrogates for prioritising conservation, conservation planners should not overlook the potential of less speciose taxa such as bees, while considering the cost-effectiveness of surveying multiple different taxa. © 2018. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton" is provided in this record**
Direct and indirect effects of herbivore activity on Australian vegetation
- Eldridge, Davied, Travers, Samantha, Manning, Adrian, Barton, Philip
- Authors: Eldridge, Davied , Travers, Samantha , Manning, Adrian , Barton, Philip
- Date: 2017
- Type: Text , Book chapter
- Relation: Australian vegetation p. 135-155
- Full Text: false
- Reviewed:
Disentangling the effects of farmland use, habitat edges, and vegetation structure on ground beetle morphological traits
- Ng, Katherina, Barton, Philip, Blanchard, Wade, Evans, Maldwyn, Lindenmayer, David
- Authors: Ng, Katherina , Barton, Philip , Blanchard, Wade , Evans, Maldwyn , Lindenmayer, David
- Date: 2018
- Type: Text , Journal article
- Relation: Oecologia Vol. 188, no. 3 (2018), p. 645-657
- Full Text:
- Reviewed:
- Description: Land-use change due to agriculture has a major influence on arthropod biodiversity, and may influence species differently depending on their traits. It is unclear how species traits vary across different land uses and their edges, with most studies focussing on single habitat types and overlooking edge effects. We examined variation in morphological traits of carabid beetles (Coleoptera:Carabidae) on both sides of edges between woodlands and four adjoining, but contrasting farmland uses in an agricultural landscape. We asked: (1) how do traits differ between woodlands and different adjoining farmland uses (crop, fallow, restoration planting, and woody debris applied over crop), and do effects depend on increasing distances from the farmland–woodland edge? (2) Does vegetation structure explain observed effects of adjoining farmland use and edge effects on these traits? We found that carabid communities varied in body size and shape, including traits associated with diet, robustness, and visual ability. Smaller sized species were associated with woodlands and larger sized species with farmlands. Farmland use further influenced these associations, where woodlands adjoining plantings supported smaller species, while fallows and crops supported larger species. Vegetation structure significantly influenced body size, flying ability, and body shape, and helped explain the effects of farmland use and distance from edges on body size. We highlight the important role of vegetation structure, farmland use, and edge effects in filtering the morphological traits of carabid assemblages across a highly modified agricultural landscape. Our findings suggest that farmland management can influence body size and dispersal-related traits in farmland and adjacent native vegetation. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- Authors: Ng, Katherina , Barton, Philip , Blanchard, Wade , Evans, Maldwyn , Lindenmayer, David
- Date: 2018
- Type: Text , Journal article
- Relation: Oecologia Vol. 188, no. 3 (2018), p. 645-657
- Full Text:
- Reviewed:
- Description: Land-use change due to agriculture has a major influence on arthropod biodiversity, and may influence species differently depending on their traits. It is unclear how species traits vary across different land uses and their edges, with most studies focussing on single habitat types and overlooking edge effects. We examined variation in morphological traits of carabid beetles (Coleoptera:Carabidae) on both sides of edges between woodlands and four adjoining, but contrasting farmland uses in an agricultural landscape. We asked: (1) how do traits differ between woodlands and different adjoining farmland uses (crop, fallow, restoration planting, and woody debris applied over crop), and do effects depend on increasing distances from the farmland–woodland edge? (2) Does vegetation structure explain observed effects of adjoining farmland use and edge effects on these traits? We found that carabid communities varied in body size and shape, including traits associated with diet, robustness, and visual ability. Smaller sized species were associated with woodlands and larger sized species with farmlands. Farmland use further influenced these associations, where woodlands adjoining plantings supported smaller species, while fallows and crops supported larger species. Vegetation structure significantly influenced body size, flying ability, and body shape, and helped explain the effects of farmland use and distance from edges on body size. We highlight the important role of vegetation structure, farmland use, and edge effects in filtering the morphological traits of carabid assemblages across a highly modified agricultural landscape. Our findings suggest that farmland management can influence body size and dispersal-related traits in farmland and adjacent native vegetation. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
Do temporal changes in vegetation structure additional to time since fire predict changes in bird occurrence?
- Lindenmayer, David, Candy, Steven, MacGregor, Christopher, Banks, Sam, Barton, Philip
- Authors: Lindenmayer, David , Candy, Steven , MacGregor, Christopher , Banks, Sam , Barton, Philip
- Date: 2016
- Type: Text , Journal article
- Relation: Ecological Applications Vol. 26, no. 7 (2016), p. 2267-2279
- Full Text:
- Reviewed:
- Description: Fire is a major ecological process in ecosystems globally. Its impacts on fauna can be both direct (e.g., mortality) and indirect (e.g., altered habitat), resulting in population recovery being driven by several possible mechanisms. Separating direct from indirect impacts of fire on faunal population recovery can be valuable in guiding management of biodiversity in fire-prone environments. However, resolving the influence of direct and indirect processes remains a key challenge because many processes affecting fauna can change concomitantly with time since fire. We explore the mechanisms influencing bird response to fire by posing the question, can temporal changes in vegetation structure predict changes in bird occurrence on sites, and can these be separated from other temporal changes using the surrogate of time since fire? We conducted a 12-yr study of bird and vegetation responses to fire at 124 sites across six vegetation classes in Booderee National Park, Australia. Approximately half of these sites, established in 2002, were burned by a large (>3000 ha) wildfire in 2003. To disentangle collinear effects of temporal changes in vegetation and direct demographic effects on population recovery that are subsumed by time since fire, we incorporated both longitudinal and cross-sectional vegetation effects in addition to time since fire within logistic structural equation models. We identified temporal changes in vegetation structure and richness of plant and bird species that characterized burned and unburned sites in all vegetation classes. For nine bird species, a significant component of the year trend was driven by temporal trends in one of three vegetation variables (number of understory or midstory plant species, or midstory cover). By contrast, we could not separate temporal effects between time since fire and vegetation attributes for bird species richness, reporting rate, and the occurrence of 11 other bird species. Our findings help identify species for which indirect effects of vegetation dominate recovery and thus may benefit from vegetation management where conservation actions are required and, conversely, those species for which direct effects of time since fire drive recovery, where simply leaving a system to recover following the last disturbance will be sufficient. © 2016 by the Ecological Society of America.
- Authors: Lindenmayer, David , Candy, Steven , MacGregor, Christopher , Banks, Sam , Barton, Philip
- Date: 2016
- Type: Text , Journal article
- Relation: Ecological Applications Vol. 26, no. 7 (2016), p. 2267-2279
- Full Text:
- Reviewed:
- Description: Fire is a major ecological process in ecosystems globally. Its impacts on fauna can be both direct (e.g., mortality) and indirect (e.g., altered habitat), resulting in population recovery being driven by several possible mechanisms. Separating direct from indirect impacts of fire on faunal population recovery can be valuable in guiding management of biodiversity in fire-prone environments. However, resolving the influence of direct and indirect processes remains a key challenge because many processes affecting fauna can change concomitantly with time since fire. We explore the mechanisms influencing bird response to fire by posing the question, can temporal changes in vegetation structure predict changes in bird occurrence on sites, and can these be separated from other temporal changes using the surrogate of time since fire? We conducted a 12-yr study of bird and vegetation responses to fire at 124 sites across six vegetation classes in Booderee National Park, Australia. Approximately half of these sites, established in 2002, were burned by a large (>3000 ha) wildfire in 2003. To disentangle collinear effects of temporal changes in vegetation and direct demographic effects on population recovery that are subsumed by time since fire, we incorporated both longitudinal and cross-sectional vegetation effects in addition to time since fire within logistic structural equation models. We identified temporal changes in vegetation structure and richness of plant and bird species that characterized burned and unburned sites in all vegetation classes. For nine bird species, a significant component of the year trend was driven by temporal trends in one of three vegetation variables (number of understory or midstory plant species, or midstory cover). By contrast, we could not separate temporal effects between time since fire and vegetation attributes for bird species richness, reporting rate, and the occurrence of 11 other bird species. Our findings help identify species for which indirect effects of vegetation dominate recovery and thus may benefit from vegetation management where conservation actions are required and, conversely, those species for which direct effects of time since fire drive recovery, where simply leaving a system to recover following the last disturbance will be sufficient. © 2016 by the Ecological Society of America.
Does wing morphology affect recolonization of restored farmland by ground-dwelling beetles?
- Gibb, Heloise, Retter, Bryony, Cunningham, Saul, Barton, Philip
- Authors: Gibb, Heloise , Retter, Bryony , Cunningham, Saul , Barton, Philip
- Date: 2017
- Type: Text , Journal article
- Relation: Restoration Ecology Vol. 25, no. 2 (2017), p. 234-242
- Full Text: false
- Reviewed:
- Description: Revegetation of previously cleared land is widely used to increase habitat area and connectivity of remnant vegetation for biodiversity conservation. Whether new habitat attracts or supports fauna depends on the dispersal traits of those fauna as well as the structure and composition of the surrounding landscape. Here, we examined wing morphology as a key dispersal trait for beetles in a revegetated landscape and asked, first, how it was related to phylogeny (family), trophic position, and body size. Second, we asked if wing morphology of recolonizing (or persisting) beetles varied with habitat characteristics at multiple scales, from microhabitat to landscape context. Third, we examined how common winged and wingless species responded to habitat at multiple scales. We measured the wing morphology of ground-dwelling beetles from a restoration chronosequence, including paddocks, “young” revegetation (8–11 years old), “old” revegetation (14–19 years old), and fenced remnant vegetation. We found that body size and family membership were significant predictors of winglessness, with wingless species of carabids and curculionids being larger than their winged counterparts. We found no difference in the number of sites occupied by winged and wingless species, and no relationship between the wing morphology traits represented in different locations and habitat characteristics or landscape context. Furthermore, the most abundant species of both winged and wingless ground-dwelling beetles had relatively little affinity to any habitat successional stage. Thus, despite intrinsic differences in wing morphology among species of ground-dwelling beetle, we found no evidence that flight-related dispersal limitations influenced recolonization (or persistence) in this landscape. © 2016 Society for Ecological Restoration
Dynamic effects of ground-layer plant communities on beetles in a fragmented farming landscape
- Ng, Katherina, McIntyre, Sue, Macfadyen, Sarina, Barton, Philip, Driscoll, Don, Lindenmayer, David
- Authors: Ng, Katherina , McIntyre, Sue , Macfadyen, Sarina , Barton, Philip , Driscoll, Don , Lindenmayer, David
- Date: 2018
- Type: Text , Journal article
- Relation: Biodiversity and Conservation Vol. 27, no. 9 (2018), p. 2131-2153
- Full Text:
- Reviewed:
- Description: Vegetation effects on arthropods are well recognized, but it is unclear how different vegetation attributes might influence arthropod assemblages across mixed-agricultural landscapes. Understanding how plant communities influence arthropods under different habitat and seasonal contexts can identify vegetation management options for arthropod biodiversity. We examined relationships between vegetation structure, plant species richness and plant species composition, and the diversity and composition of beetles in different habitats and time periods. We asked: (1) What is the relative importance of plant species richness, vegetation structure and plant composition in explaining beetle species richness, activity-density and composition? (2) How do plant-beetle relationships vary between different habitats over time? We sampled beetles using pitfall traps and surveyed vegetation in three habitats (woodland, farmland, their edges) during peak crop growth in spring and post-harvest in summer. Plant composition better predicted beetle composition than vegetation structure. Both plant richness and vegetation structure significantly and positively affected beetle activity-density. The influence of all vegetation attributes often varied in strength and direction between habitats and seasons for all trophic groups. The variable nature of plant-beetle relationships suggests that vegetation management could be targeted at specific habitats and time periods to maximize positive outcomes for beetle diversity. In particular, management that promotes plant richness at edges, and promotes herbaceous cover during summer, can support beetle diversity. Conserving ground cover in all habitats may improve activity-density of all beetle trophic groups. The impacts of existing weed control strategies in Australian crop margins on arthropod biodiversity require further study. © 2018, Springer Science+Business Media B.V., part of Springer Nature.
- Authors: Ng, Katherina , McIntyre, Sue , Macfadyen, Sarina , Barton, Philip , Driscoll, Don , Lindenmayer, David
- Date: 2018
- Type: Text , Journal article
- Relation: Biodiversity and Conservation Vol. 27, no. 9 (2018), p. 2131-2153
- Full Text:
- Reviewed:
- Description: Vegetation effects on arthropods are well recognized, but it is unclear how different vegetation attributes might influence arthropod assemblages across mixed-agricultural landscapes. Understanding how plant communities influence arthropods under different habitat and seasonal contexts can identify vegetation management options for arthropod biodiversity. We examined relationships between vegetation structure, plant species richness and plant species composition, and the diversity and composition of beetles in different habitats and time periods. We asked: (1) What is the relative importance of plant species richness, vegetation structure and plant composition in explaining beetle species richness, activity-density and composition? (2) How do plant-beetle relationships vary between different habitats over time? We sampled beetles using pitfall traps and surveyed vegetation in three habitats (woodland, farmland, their edges) during peak crop growth in spring and post-harvest in summer. Plant composition better predicted beetle composition than vegetation structure. Both plant richness and vegetation structure significantly and positively affected beetle activity-density. The influence of all vegetation attributes often varied in strength and direction between habitats and seasons for all trophic groups. The variable nature of plant-beetle relationships suggests that vegetation management could be targeted at specific habitats and time periods to maximize positive outcomes for beetle diversity. In particular, management that promotes plant richness at edges, and promotes herbaceous cover during summer, can support beetle diversity. Conserving ground cover in all habitats may improve activity-density of all beetle trophic groups. The impacts of existing weed control strategies in Australian crop margins on arthropod biodiversity require further study. © 2018, Springer Science+Business Media B.V., part of Springer Nature.
Dynamic soil nutrient and moisture changes under decomposing vertebrate carcasses
- Quaggiotto, Maria, Evans, Maldwyn, Higgins, Andrew, Strong, Craig, Barton, Philip
- Authors: Quaggiotto, Maria , Evans, Maldwyn , Higgins, Andrew , Strong, Craig , Barton, Philip
- Date: 2019
- Type: Text , Journal article
- Relation: Biogeochemistry Vol. 146, no. 1 (2019), p. 71-82
- Full Text: false
- Reviewed:
- Description: The decomposition of animal carcasses contributes to nutrient recycling in ecosystems worldwide, including by delivering nutrients to soil. Although several studies have characterised changes in soil chemistry occurring under carcasses, many ecological studies have occurred over extended post-mortem intervals and fine-scale temporal changes in physicochemical conditions are poorly understood. We examined changes in a suite of soil physicochemical properties occurring under decomposing rabbit carcasses during summer in a grassland ecosystem. We found that carcasses lost over 90% of their starting mass and reached dry decay and skeletonization after 20 days of decomposition. Carcass temperatures were up to 15 °C higher than ambient temperatures during the active decay stage (days 3 and 5) of decomposition. Soil moisture also increased by day 4, and this was matched with a simultaneous increase in total nitrogen and ammonium, as well increases in pH and electrical conductivity. Whereas these measures remained relatively stable as decay progressed, we found total phosphorus and phosphate continued to increase to day 20. The contrasting dynamics of N and P reflect the initial nutrient and fluid input during the rapid decay of soft tissues and intense activity of fly larvae, and the subsequent dry decay and exposure of skeletal components. Our study provides new information about the fine-scale timing of nutrient inputs and moisture and temperature changes occurring at the carcass/soil interface. © 2019, Springer Nature Switzerland AG.
Ecological processes associated with different animal taxa in urban environments
- Evans, Maldwyn, Barton, Philip, Westgate, Martin, Soga, Masashi, Fujita, Go, Miyashita, Tadashi
- Authors: Evans, Maldwyn , Barton, Philip , Westgate, Martin , Soga, Masashi , Fujita, Go , Miyashita, Tadashi
- Date: 2021
- Type: Text , Journal article
- Relation: Ecosphere Vol. 12, no. 8 (2021), p.
- Full Text:
- Reviewed:
- Description: Urbanization is increasing globally with wide-ranging consequences for biodiversity and the ecological processes it performs. Yet knowledge of the range of ecological processes supported by biodiversity in urban environments, and the different taxa that perform these processes is poorly understood. We used a text-analysis approach to identify the research trends and gaps in knowledge in the literature on ecological processes provided by animals in urban environments. We found a divide in urban ecological processes research that grouped studies into those with an explicit link to ecological processes and those that focused on biodiversity and made an implicit link to ecological processes. We also found that the dominant taxa in urban ecological processes research were insects, which has more than twice as many studies as birds or mammals, potentially due to their recognized and explicit link to key processes and services (e.g., pollination, pollution biomonitoring) and disservices (e.g., pests, disease transmission). We found a further split between terrestrial and aquatic studies, with urban aquatic studies also declining in relative prevalence over the last 20 yr. To consolidate and advance research on ecological processes in urban environments, we suggest it will be important to bridge the divide between studies on explicit services and others on more general biodiversity. This might be achieved by placing greater focus on the processes provided by non-insect taxa, and by integrating aquatic and terrestrial perspectives. © 2021 The Authors.
- Authors: Evans, Maldwyn , Barton, Philip , Westgate, Martin , Soga, Masashi , Fujita, Go , Miyashita, Tadashi
- Date: 2021
- Type: Text , Journal article
- Relation: Ecosphere Vol. 12, no. 8 (2021), p.
- Full Text:
- Reviewed:
- Description: Urbanization is increasing globally with wide-ranging consequences for biodiversity and the ecological processes it performs. Yet knowledge of the range of ecological processes supported by biodiversity in urban environments, and the different taxa that perform these processes is poorly understood. We used a text-analysis approach to identify the research trends and gaps in knowledge in the literature on ecological processes provided by animals in urban environments. We found a divide in urban ecological processes research that grouped studies into those with an explicit link to ecological processes and those that focused on biodiversity and made an implicit link to ecological processes. We also found that the dominant taxa in urban ecological processes research were insects, which has more than twice as many studies as birds or mammals, potentially due to their recognized and explicit link to key processes and services (e.g., pollination, pollution biomonitoring) and disservices (e.g., pests, disease transmission). We found a further split between terrestrial and aquatic studies, with urban aquatic studies also declining in relative prevalence over the last 20 yr. To consolidate and advance research on ecological processes in urban environments, we suggest it will be important to bridge the divide between studies on explicit services and others on more general biodiversity. This might be achieved by placing greater focus on the processes provided by non-insect taxa, and by integrating aquatic and terrestrial perspectives. © 2021 The Authors.