Continuous patient monitoring with a patient centric agent : A block architecture
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2018
- Type: Text , Journal article
- Relation: IEEE Access Vol. 6, no. (2018), p. 32700-32726
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including continuous remote patient monitoring (RPM). However, the complexity of RPM architectures, the size of data sets generated and limited power capacity of devices make RPM challenging. In this paper, we propose a tier-based End to End architecture for continuous patient monitoring that has a patient centric agent (PCA) as its center piece. The PCA manages a blockchain component to preserve privacy when data streaming from body area sensors needs to be stored securely. The PCA based architecture includes a lightweight communication protocol to enforce security of data through different segments of a continuous, real time patient monitoring architecture. The architecture includes the insertion of data into a personal blockchain to facilitate data sharing amongst healthcare professionals and integration into electronic health records while ensuring privacy is maintained. The blockchain is customized for RPM with modifications that include having the PCA select a Miner to reduce computational effort, enabling the PCA to manage multiple blockchains for the same patient, and the modification of each block with a prefix tree to minimize energy consumption and incorporate secure transaction payments. Simulation results demonstrate that security and privacy can be enhanced in RPM with the PCA based End to End architecture.
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2018
- Type: Text , Journal article
- Relation: IEEE Access Vol. 6, no. (2018), p. 32700-32726
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including continuous remote patient monitoring (RPM). However, the complexity of RPM architectures, the size of data sets generated and limited power capacity of devices make RPM challenging. In this paper, we propose a tier-based End to End architecture for continuous patient monitoring that has a patient centric agent (PCA) as its center piece. The PCA manages a blockchain component to preserve privacy when data streaming from body area sensors needs to be stored securely. The PCA based architecture includes a lightweight communication protocol to enforce security of data through different segments of a continuous, real time patient monitoring architecture. The architecture includes the insertion of data into a personal blockchain to facilitate data sharing amongst healthcare professionals and integration into electronic health records while ensuring privacy is maintained. The blockchain is customized for RPM with modifications that include having the PCA select a Miner to reduce computational effort, enabling the PCA to manage multiple blockchains for the same patient, and the modification of each block with a prefix tree to minimize energy consumption and incorporate secure transaction payments. Simulation results demonstrate that security and privacy can be enhanced in RPM with the PCA based End to End architecture.
A secured framework for SDN-based edge computing in IoT-enabled healthcare system
- Li, Junxia, Cai, Jinjin, Khan, Fazlullah, Rehman, Ateeq, Balasubramanian, Venki
- Authors: Li, Junxia , Cai, Jinjin , Khan, Fazlullah , Rehman, Ateeq , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 135479-135490
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) consists of resource-constrained smart devices capable to sense and process data. It connects a huge number of smart sensing devices, i.e., things, and heterogeneous networks. The IoT is incorporated into different applications, such as smart health, smart home, smart grid, etc. The concept of smart healthcare has emerged in different countries, where pilot projects of healthcare facilities are analyzed. In IoT-enabled healthcare systems, the security of IoT devices and associated data is very important, whereas Edge computing is a promising architecture that solves their computational and processing problems. Edge computing is economical and has the potential to provide low latency data services by improving the communication and computation speed of IoT devices in a healthcare system. In Edge-based IoT-enabled healthcare systems, load balancing, network optimization, and efficient resource utilization are accurately performed using artificial intelligence (AI), i.e., intelligent software-defined network (SDN) controller. SDN-based Edge computing is helpful in the efficient utilization of limited resources of IoT devices. However, these low powered devices and associated data (private sensitive data of patients) are prone to various security threats. Therefore, in this paper, we design a secure framework for SDN-based Edge computing in IoT-enabled healthcare system. In the proposed framework, the IoT devices are authenticated by the Edge servers using a lightweight authentication scheme. After authentication, these devices collect data from the patients and send them to the Edge servers for storage, processing, and analyses. The Edge servers are connected with an SDN controller, which performs load balancing, network optimization, and efficient resource utilization in the healthcare system. The proposed framework is evaluated using computer-based simulations. The results demonstrate that the proposed framework provides better solutions for IoT-enabled healthcare systems. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramaniam” is provided in this record**
- Authors: Li, Junxia , Cai, Jinjin , Khan, Fazlullah , Rehman, Ateeq , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 135479-135490
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) consists of resource-constrained smart devices capable to sense and process data. It connects a huge number of smart sensing devices, i.e., things, and heterogeneous networks. The IoT is incorporated into different applications, such as smart health, smart home, smart grid, etc. The concept of smart healthcare has emerged in different countries, where pilot projects of healthcare facilities are analyzed. In IoT-enabled healthcare systems, the security of IoT devices and associated data is very important, whereas Edge computing is a promising architecture that solves their computational and processing problems. Edge computing is economical and has the potential to provide low latency data services by improving the communication and computation speed of IoT devices in a healthcare system. In Edge-based IoT-enabled healthcare systems, load balancing, network optimization, and efficient resource utilization are accurately performed using artificial intelligence (AI), i.e., intelligent software-defined network (SDN) controller. SDN-based Edge computing is helpful in the efficient utilization of limited resources of IoT devices. However, these low powered devices and associated data (private sensitive data of patients) are prone to various security threats. Therefore, in this paper, we design a secure framework for SDN-based Edge computing in IoT-enabled healthcare system. In the proposed framework, the IoT devices are authenticated by the Edge servers using a lightweight authentication scheme. After authentication, these devices collect data from the patients and send them to the Edge servers for storage, processing, and analyses. The Edge servers are connected with an SDN controller, which performs load balancing, network optimization, and efficient resource utilization in the healthcare system. The proposed framework is evaluated using computer-based simulations. The results demonstrate that the proposed framework provides better solutions for IoT-enabled healthcare systems. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramaniam” is provided in this record**
An AI-enabled lightweight data fusion and load optimization approach for internet of things
- Jan, Mian, Zakarya, Muhammad, Khan, Muhammad, Mastorakis, Spyridon, Balasubramanian, Venki
- Authors: Jan, Mian , Zakarya, Muhammad , Khan, Muhammad , Mastorakis, Spyridon , Balasubramanian, Venki
- Date: 2021
- Type: Text , Journal article
- Relation: Future Generation Computer Systems Vol. 122, no. (2021), p. 40-51
- Full Text: false
- Reviewed:
- Description: In the densely populated Internet of Things (IoT) applications, sensing range of the nodes might overlap frequently. In these applications, the nodes gather highly correlated and redundant data in their vicinity. Processing these data depletes the energy of nodes and their upstream transmission towards remote datacentres, in the fog infrastructure, may result in an unbalanced load at the network gateways and edge servers. Due to heterogeneity of edge servers, few of them might be overwhelmed while others may remain less-utilized. As a result, time-critical and delay-sensitive applications may experience excessive delays, packet loss, and degradation in their Quality of Service (QoS). To ensure QoS of IoT applications, in this paper, we eliminate correlation in the gathered data via a lightweight data fusion approach. The buffer of each node is partitioned into strata that broadcast only non-correlated data to edge servers via the network gateways. Furthermore, we propose a dynamic service migration technique to reconfigure the load across various edge servers. We assume this as an optimization problem and use two meta-heuristic algorithms, along with a migration approach, to maintain an optimal Gateway-Edge configuration in the network. These algorithms monitor the load at each server, and once it surpasses a threshold value (which is dynamically computed with a simple machine learning method), an exhaustive search is performed for an optimal and balanced periodic reconfiguration. The experimental results of our approach justify its efficiency for large-scale and densely populated IoT applications. © 2021 Elsevier B.V. *Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramanian” is provided in this record**.
Blockchain leveraged task migration in body area sensor networks
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2019
- Type: Text , Conference proceedings , Conference paper
- Relation: 25th Asia-Pacific Conference on Communications, APCC 2019 p. 177-184
- Full Text:
- Reviewed:
- Description: Blockchain technologies emerging for healthcare support secure health data sharing with greater interoperability among different heterogeneous systems. However, the collection and storage of data generated from Body Area Sensor Net-works(BASN) for migration to high processing power computing services requires an efficient BASN architecture. We present a decentralized BASN architecture that involves devices at three levels; 1) Body Area Sensor Network-medical sensors typically on or in patient's body transmitting data to a Smartphone, 2) Fog/Edge, and 3) Cloud. We propose that a Patient Agent(PA) replicated on the Smartphone, Fog and Cloud servers processes medical data and execute a task offloading algorithm by leveraging a Blockchain. Performance analysis is conducted to demonstrate the feasibility of the proposed Blockchain leveraged, distributed Patient Agent controlled BASN. © 2019 IEEE.
- Description: E1
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2019
- Type: Text , Conference proceedings , Conference paper
- Relation: 25th Asia-Pacific Conference on Communications, APCC 2019 p. 177-184
- Full Text:
- Reviewed:
- Description: Blockchain technologies emerging for healthcare support secure health data sharing with greater interoperability among different heterogeneous systems. However, the collection and storage of data generated from Body Area Sensor Net-works(BASN) for migration to high processing power computing services requires an efficient BASN architecture. We present a decentralized BASN architecture that involves devices at three levels; 1) Body Area Sensor Network-medical sensors typically on or in patient's body transmitting data to a Smartphone, 2) Fog/Edge, and 3) Cloud. We propose that a Patient Agent(PA) replicated on the Smartphone, Fog and Cloud servers processes medical data and execute a task offloading algorithm by leveraging a Blockchain. Performance analysis is conducted to demonstrate the feasibility of the proposed Blockchain leveraged, distributed Patient Agent controlled BASN. © 2019 IEEE.
- Description: E1
Blockchain leveraged decentralized IoT eHealth framework
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: Internet of Things Vol. 9, no. March 2020 p. 100159
- Full Text:
- Reviewed:
- Description: Blockchain technologies recently emerging for eHealth, can facilitate a secure, decentral- ized and patient-driven, record management system. However, Blockchain technologies cannot accommodate the storage of data generated from IoT devices in remote patient management (RPM) settings as this application requires a fast consensus mechanism, care- ful management of keys and enhanced protocols for privacy. In this paper, we propose a Blockchain leveraged decentralized eHealth architecture which comprises three layers: (1) The Sensing layer –Body Area Sensor Networks include medical sensors typically on or in a patient body transmitting data to a smartphone. (2) The NEAR processing layer –Edge Networks consist of devices at one hop from data sensing IoT devices. (3) The FAR pro- cessing layer –Core Networks comprise Cloud or other high computing servers). A Patient Agent (PA) software replicated on the three layers processes medical data to ensure reli- able, secure and private communication. The PA executes a lightweight Blockchain consen- sus mechanism and utilizes a Blockchain leveraged task-offloading algorithm to ensure pa- tient’s privacy while outsourcing tasks. Performance analysis of the decentralized eHealth architecture has been conducted to demonstrate the feasibility of the system in the pro- cessing and storage of RPM data.
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: Internet of Things Vol. 9, no. March 2020 p. 100159
- Full Text:
- Reviewed:
- Description: Blockchain technologies recently emerging for eHealth, can facilitate a secure, decentral- ized and patient-driven, record management system. However, Blockchain technologies cannot accommodate the storage of data generated from IoT devices in remote patient management (RPM) settings as this application requires a fast consensus mechanism, care- ful management of keys and enhanced protocols for privacy. In this paper, we propose a Blockchain leveraged decentralized eHealth architecture which comprises three layers: (1) The Sensing layer –Body Area Sensor Networks include medical sensors typically on or in a patient body transmitting data to a smartphone. (2) The NEAR processing layer –Edge Networks consist of devices at one hop from data sensing IoT devices. (3) The FAR pro- cessing layer –Core Networks comprise Cloud or other high computing servers). A Patient Agent (PA) software replicated on the three layers processes medical data to ensure reli- able, secure and private communication. The PA executes a lightweight Blockchain consen- sus mechanism and utilizes a Blockchain leveraged task-offloading algorithm to ensure pa- tient’s privacy while outsourcing tasks. Performance analysis of the decentralized eHealth architecture has been conducted to demonstrate the feasibility of the system in the pro- cessing and storage of RPM data.
AI and IoT-Enabled smart exoskeleton system for rehabilitation of paralyzed people in connected communities
- Jacob, Sunil, Alagirisamy, Mukil, Xi, Chen, Balasubramanian, Venki, Srinivasan, Ram
- Authors: Jacob, Sunil , Alagirisamy, Mukil , Xi, Chen , Balasubramanian, Venki , Srinivasan, Ram
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Access Vol. 9, no. (2021), p. 80340-80350
- Full Text:
- Reviewed:
- Description: In recent years, the number of cases of spinal cord injuries, stroke and other nervous impairments have led to an increase in the number of paralyzed patients worldwide. Rehabilitation that can aid and enhance the lives of such patients is the need of the hour. Exoskeletons have been found as one of the popular means of rehabilitation. The existing exoskeletons use techniques that impose limitations on adaptability, instant response and continuous control. Also most of them are expensive, bulky, and requires high level of training. To overcome all the above limitations, this paper introduces an Artificial Intelligence (AI) powered Smart and light weight Exoskeleton System (AI-IoT-SES) which receives data from various sensors, classifies them intelligently and generates the desired commands via Internet of Things (IoT) for rendering rehabilitation and support with the help of caretakers for paralyzed patients in smart and connected communities. In the proposed system, the signals collected from the exoskeleton sensors are processed using AI-assisted navigation module, and helps the caretakers in guiding, communicating and controlling the movements of the exoskeleton integrated to the patients. The navigation module uses AI and IoT enabled Simultaneous Localization and Mapping (SLAM). The casualties of a paralyzed person are reduced by commissioning the IoT platform to exchange data from the intelligent sensors with the remote location of the caretaker to monitor the real time movement and navigation of the exoskeleton. The automated exoskeleton detects and take decisions on navigation thereby improving the life conditions of such patients. The experimental results simulated using MATLAB shows that the proposed system is the ideal method for rendering rehabilitation and support for paralyzed patients in smart communities. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramanian” is provided in this record**
- Authors: Jacob, Sunil , Alagirisamy, Mukil , Xi, Chen , Balasubramanian, Venki , Srinivasan, Ram
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Access Vol. 9, no. (2021), p. 80340-80350
- Full Text:
- Reviewed:
- Description: In recent years, the number of cases of spinal cord injuries, stroke and other nervous impairments have led to an increase in the number of paralyzed patients worldwide. Rehabilitation that can aid and enhance the lives of such patients is the need of the hour. Exoskeletons have been found as one of the popular means of rehabilitation. The existing exoskeletons use techniques that impose limitations on adaptability, instant response and continuous control. Also most of them are expensive, bulky, and requires high level of training. To overcome all the above limitations, this paper introduces an Artificial Intelligence (AI) powered Smart and light weight Exoskeleton System (AI-IoT-SES) which receives data from various sensors, classifies them intelligently and generates the desired commands via Internet of Things (IoT) for rendering rehabilitation and support with the help of caretakers for paralyzed patients in smart and connected communities. In the proposed system, the signals collected from the exoskeleton sensors are processed using AI-assisted navigation module, and helps the caretakers in guiding, communicating and controlling the movements of the exoskeleton integrated to the patients. The navigation module uses AI and IoT enabled Simultaneous Localization and Mapping (SLAM). The casualties of a paralyzed person are reduced by commissioning the IoT platform to exchange data from the intelligent sensors with the remote location of the caretaker to monitor the real time movement and navigation of the exoskeleton. The automated exoskeleton detects and take decisions on navigation thereby improving the life conditions of such patients. The experimental results simulated using MATLAB shows that the proposed system is the ideal method for rendering rehabilitation and support for paralyzed patients in smart communities. © 2013 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Venki Balasubramanian” is provided in this record**
Security challenges and solutions for 5G HetNet
- Sharma, Aakanksha, Balasubramanian, Venki, Jolfaei, Alireza
- Authors: Sharma, Aakanksha , Balasubramanian, Venki , Jolfaei, Alireza
- Date: 2020
- Type: Text , Conference paper
- Relation: 19th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) p. 1318-1323
- Full Text: false
- Reviewed:
- Description: The exponential growth of smartphones and other smart communicating devices has led to the proliferation of the Internet of Things (IoT) applications. Literature shows, one person will have more than six intelligent connected devices in future. The existing network infrastructure and bandwidth will be unable to accommodate the growing number of smart connected devices, therefore, achieving the expected Quality of Service (QoS) and Quality of Experience (QoE) remains a challenge. The advent and deployment of 5G network bring a massive number of innovative network services and exceptional user experience by providing superior data rates. Despite numerous benefits that 5G offers, the security and privacy in 5G is a challenge due to the existing large number of heterogeneous networks (HetNet). To harvest the numerous benefits of 5G, it is imperative to provide adequate protection mechanisms to maintain the user and data privacy in growing HetNet. This article comprehensively addresses the existing security issues in 5G HetNet and solutions for the identified problems in the HetNet edge. © 2020 IEEE.
A lightweight blockchain based framework for underwater ioT
- Uddin, Md Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Md Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2019
- Type: Text , Journal article
- Relation: Electronics (Switzerland) Vol. 8, no. 12 (2019), p.
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including underwater monitoring, where sensors are located at various depths, and data must be transmitted to surface base stations for storage and processing. Ensuring that data transmitted across hierarchical sensor networks are kept secure and private without high computational cost remains a challenge. In this paper, we propose a multilevel sensor monitoring architecture. Our proposal includes a layer-based architecture consisting of Fog and Cloud elements to process and store and process the Internet of Underwater Things (IoUT) data securely with customized Blockchain technology. The secure routing of IoUT data through the hierarchical topology ensures the legitimacy of data sources. A security and performance analysis was performed to show that the architecture can collect data from IoUT devices in the monitoring region efficiently and securely. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
- Authors: Uddin, Md Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2019
- Type: Text , Journal article
- Relation: Electronics (Switzerland) Vol. 8, no. 12 (2019), p.
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including underwater monitoring, where sensors are located at various depths, and data must be transmitted to surface base stations for storage and processing. Ensuring that data transmitted across hierarchical sensor networks are kept secure and private without high computational cost remains a challenge. In this paper, we propose a multilevel sensor monitoring architecture. Our proposal includes a layer-based architecture consisting of Fog and Cloud elements to process and store and process the Internet of Underwater Things (IoUT) data securely with customized Blockchain technology. The secure routing of IoUT data through the hierarchical topology ensures the legitimacy of data sources. A security and performance analysis was performed to show that the architecture can collect data from IoUT devices in the monitoring region efficiently and securely. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
- «
- ‹
- 1
- ›
- »