KIDNet : a knowledge-aware neural network model for academic performance prediction
- Tang, Tao, Hou, Jie, Guo, Teng, Bai, Xiaomei, Tian, Xue, Noori Hoshyar, Azadeh
- Authors: Tang, Tao , Hou, Jie , Guo, Teng , Bai, Xiaomei , Tian, Xue , Noori Hoshyar, Azadeh
- Date: 2021
- Type: Text , Conference paper
- Relation: 2021 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2021, Virtual, Online14-17 December 2021, ACM International Conference Proceeding Series p. 37-44
- Full Text: false
- Reviewed:
- Description: Academic performance prediction and analysis in educational data mining is meaningful for instructors to know the student's ongoing learning status, and also provide appropriate help to students as early as possible if academic difficulties appear. In this paper, we first collect the basic information of students and courses as features. Then, we propose a novel knowledge extraction framework to obtain course knowledge features to reinforce feature groups. The comparative analyses of the knowledge similarity and average grades of the courses in all terms demonstrate a strong correlation between them. Furthermore, we build the Knowledge Interaction Discovery Network (KIDNet) model, based on factorization machine (FM) and deep neural network (DNN) algorithms. This model uses FM to model lower-order interactions of sparse features and employs DNN to model higher-order interactions of both dense and sparse features. The effectiveness of KIDNet has been validated by conducting experiments based on a real-world dataset. © 2021 ACM.
Educational big data : predictions, applications and challenges
- Bai, Xiaomei, Zhang, Fuli, Li, Jinzhou, Guo, Teng, Xia, Feng
- Authors: Bai, Xiaomei , Zhang, Fuli , Li, Jinzhou , Guo, Teng , Xia, Feng
- Date: 2021
- Type: Text , Journal article , Review
- Relation: Big Data Research Vol. 26, no. (2021), p.
- Full Text:
- Reviewed:
- Description: Educational big data is becoming a strategic educational asset, exceptionally significant in advancing educational reform. The term educational big data stems from the rapidly growing educational data development, including students' inherent attributes, learning behavior, and psychological state. Educational big data has many applications that can be used for educational administration, teaching innovation, and research management. The representative examples of such applications are student academic performance prediction, employment recommendation, and financial support for low-income students. Different empirical studies have shown that it is possible to predict student performance in the courses during the next term. Predictive research for the higher education stage has become an attractive area of study since it allowed us to predict student behavior. In this survey, we will review predictive research, its applications, and its challenges. We first introduce the significance and background of educational big data. Second, we review the students' academic performance prediction research, such as factors influencing students' academic performance, predicting models, evaluating indices. Third, we introduce the applications of educational big data such as prediction, recommendation, and evaluation. Finally, we investigate challenging research issues in this area. This discussion aims to provide a comprehensive overview of educational big data. © 2021 Elsevier Inc. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Feng Xia” is provided in this record**
- Authors: Bai, Xiaomei , Zhang, Fuli , Li, Jinzhou , Guo, Teng , Xia, Feng
- Date: 2021
- Type: Text , Journal article , Review
- Relation: Big Data Research Vol. 26, no. (2021), p.
- Full Text:
- Reviewed:
- Description: Educational big data is becoming a strategic educational asset, exceptionally significant in advancing educational reform. The term educational big data stems from the rapidly growing educational data development, including students' inherent attributes, learning behavior, and psychological state. Educational big data has many applications that can be used for educational administration, teaching innovation, and research management. The representative examples of such applications are student academic performance prediction, employment recommendation, and financial support for low-income students. Different empirical studies have shown that it is possible to predict student performance in the courses during the next term. Predictive research for the higher education stage has become an attractive area of study since it allowed us to predict student behavior. In this survey, we will review predictive research, its applications, and its challenges. We first introduce the significance and background of educational big data. Second, we review the students' academic performance prediction research, such as factors influencing students' academic performance, predicting models, evaluating indices. Third, we introduce the applications of educational big data such as prediction, recommendation, and evaluation. Finally, we investigate challenging research issues in this area. This discussion aims to provide a comprehensive overview of educational big data. © 2021 Elsevier Inc. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Feng Xia” is provided in this record**
Graduate employment prediction with bias
- Guo, Teng, Xia, Feng, Zhen, Shihao, Bai, Xiaomei, Zhang, Dongyu
- Authors: Guo, Teng , Xia, Feng , Zhen, Shihao , Bai, Xiaomei , Zhang, Dongyu
- Date: 2020
- Type: Text , Conference paper
- Relation: AAAI 2020 - 34th AAAI Conference on Artificial Intelligence p. 670-677
- Full Text:
- Reviewed:
- Description: The failure of landing a job for college students could cause serious social consequences such as drunkenness and suicide. In addition to academic performance, unconscious biases can become one key obstacle for hunting jobs for graduating students. Thus, it is necessary to understand these unconscious biases so that we can help these students at an early stage with more personalized intervention. In this paper, we develop a framework, i.e., MAYA (Multi-mAjor emploYment stAtus) to predict students’ employment status while considering biases. The framework consists of four major components. Firstly, we solve the heterogeneity of student courses by embedding academic performance into a unified space. Then, we apply a generative adversarial network (GAN) to overcome the class imbalance problem. Thirdly, we adopt Long Short-Term Memory (LSTM) with a novel dropout mechanism to comprehensively capture sequential information among semesters. Finally, we design a bias-based regularization to capture the job market biases. We conduct extensive experiments on a large-scale educational dataset and the results demonstrate the effectiveness of our prediction framework. Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Feng Xia” is provided in this record**
- Authors: Guo, Teng , Xia, Feng , Zhen, Shihao , Bai, Xiaomei , Zhang, Dongyu
- Date: 2020
- Type: Text , Conference paper
- Relation: AAAI 2020 - 34th AAAI Conference on Artificial Intelligence p. 670-677
- Full Text:
- Reviewed:
- Description: The failure of landing a job for college students could cause serious social consequences such as drunkenness and suicide. In addition to academic performance, unconscious biases can become one key obstacle for hunting jobs for graduating students. Thus, it is necessary to understand these unconscious biases so that we can help these students at an early stage with more personalized intervention. In this paper, we develop a framework, i.e., MAYA (Multi-mAjor emploYment stAtus) to predict students’ employment status while considering biases. The framework consists of four major components. Firstly, we solve the heterogeneity of student courses by embedding academic performance into a unified space. Then, we apply a generative adversarial network (GAN) to overcome the class imbalance problem. Thirdly, we adopt Long Short-Term Memory (LSTM) with a novel dropout mechanism to comprehensively capture sequential information among semesters. Finally, we design a bias-based regularization to capture the job market biases. We conduct extensive experiments on a large-scale educational dataset and the results demonstrate the effectiveness of our prediction framework. Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Feng Xia” is provided in this record**
Evaluating the impact of articles with geographical distances between institutions
- Bai, Xiaomei, Hou, Jie, Du,Hongzhuang, Kong, Xiangjie, Xia, Feng
- Authors: Bai, Xiaomei , Hou, Jie , Du,Hongzhuang , Kong, Xiangjie , Xia, Feng
- Date: 2017
- Type: Text , Conference proceedings
- Relation: WWW '17: 26th International World Wide Web Conference; Perth Australia April 3 - 7, 2017. Published in WWW '17 Companion: Proceedings of the 26th International Conference on World Wide Web Companion p. 1243-1244
- Full Text: false
- Reviewed:
- Description: Evaluating the impact of scholarly papers plays an important role for addressing recruitment decision, funding allocation and promotion, etc. Yet little is known how actual geographic distance influences the impact of scholarly papers. In this paper, we leverage the law of geographic distance and citations between different institutions to weight quantum Pagerank algorithm for objectively measuring the impact of scholarly papers. The results indicate that the weighted quantum PageRank algorithm can better differentiate the impact of scholarly papers compared to PageRank algorithm.
Educational anomaly analytics : features, methods, and challenges
- Guo, Teng, Bai, Xiaomei, Tian, Xue, Firmin, Sally, Xia, Feng
- Authors: Guo, Teng , Bai, Xiaomei , Tian, Xue , Firmin, Sally , Xia, Feng
- Date: 2022
- Type: Text , Journal article , Review
- Relation: Frontiers in Big Data Vol. 4, no. (2022), p.
- Full Text:
- Reviewed:
- Description: Anomalies in education affect the personal careers of students and universities' retention rates. Understanding the laws behind educational anomalies promotes the development of individual students and improves the overall quality of education. However, the inaccessibility of educational data hinders the development of the field. Previous research in this field used questionnaires, which are time- and cost-consuming and hardly applicable to large-scale student cohorts. With the popularity of educational management systems and the rise of online education during the prevalence of COVID-19, a large amount of educational data is available online and offline, providing an unprecedented opportunity to explore educational anomalies from a data-driven perspective. As an emerging field, educational anomaly analytics rapidly attracts scholars from a variety of fields, including education, psychology, sociology, and computer science. This paper intends to provide a comprehensive review of data-driven analytics of educational anomalies from a methodological standpoint. We focus on the following five types of research that received the most attention: course failure prediction, dropout prediction, mental health problems detection, prediction of difficulty in graduation, and prediction of difficulty in employment. Then, we discuss the challenges of current related research. This study aims to provide references for educational policymaking while promoting the development of educational anomaly analytics as a growing field. Copyright © 2022 Guo, Bai, Tian, Firmin and Xia.
- Authors: Guo, Teng , Bai, Xiaomei , Tian, Xue , Firmin, Sally , Xia, Feng
- Date: 2022
- Type: Text , Journal article , Review
- Relation: Frontiers in Big Data Vol. 4, no. (2022), p.
- Full Text:
- Reviewed:
- Description: Anomalies in education affect the personal careers of students and universities' retention rates. Understanding the laws behind educational anomalies promotes the development of individual students and improves the overall quality of education. However, the inaccessibility of educational data hinders the development of the field. Previous research in this field used questionnaires, which are time- and cost-consuming and hardly applicable to large-scale student cohorts. With the popularity of educational management systems and the rise of online education during the prevalence of COVID-19, a large amount of educational data is available online and offline, providing an unprecedented opportunity to explore educational anomalies from a data-driven perspective. As an emerging field, educational anomaly analytics rapidly attracts scholars from a variety of fields, including education, psychology, sociology, and computer science. This paper intends to provide a comprehensive review of data-driven analytics of educational anomalies from a methodological standpoint. We focus on the following five types of research that received the most attention: course failure prediction, dropout prediction, mental health problems detection, prediction of difficulty in graduation, and prediction of difficulty in employment. Then, we discuss the challenges of current related research. This study aims to provide references for educational policymaking while promoting the development of educational anomaly analytics as a growing field. Copyright © 2022 Guo, Bai, Tian, Firmin and Xia.
Quantifying success in science : an overview
- Bai, Xiaomei, Pan, Habxiao, Hou, Jie, Guo, Teng, Lee, Ivan, Xia, Feng
- Authors: Bai, Xiaomei , Pan, Habxiao , Hou, Jie , Guo, Teng , Lee, Ivan , Xia, Feng
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 123200-123214
- Full Text:
- Reviewed:
- Description: Quantifying success in science plays a key role in guiding funding allocations, recruitment decisions, and rewards. Recently, a significant amount of progresses have been made towards quantifying success in science. This lack of detailed analysis and summary continues a practical issue. The literature reports the factors influencing scholarly impact and evaluation methods and indices aimed at overcoming this crucial weakness. We focus on categorizing and reviewing the current development on evaluation indices of scholarly impact, including paper impact, scholar impact, and journal impact. Besides, we summarize the issues of existing evaluation methods and indices, investigate the open issues and challenges, and provide possible solutions, including the pattern of collaboration impact, unified evaluation standards, implicit success factor mining, dynamic academic network embedding, and scholarly impact inflation. This paper should help the researchers obtaining a broader understanding of quantifying success in science, and identifying some potential research directions. © 2013 IEEE.
- Description: This work was supported in part by the Liaoning Provincial Key Research and Development Guidance Project under Grant 2018104021, and in part by the Liaoning Provincial Natural Fund Guidance Plan under Grant 20180550011.
- Authors: Bai, Xiaomei , Pan, Habxiao , Hou, Jie , Guo, Teng , Lee, Ivan , Xia, Feng
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 123200-123214
- Full Text:
- Reviewed:
- Description: Quantifying success in science plays a key role in guiding funding allocations, recruitment decisions, and rewards. Recently, a significant amount of progresses have been made towards quantifying success in science. This lack of detailed analysis and summary continues a practical issue. The literature reports the factors influencing scholarly impact and evaluation methods and indices aimed at overcoming this crucial weakness. We focus on categorizing and reviewing the current development on evaluation indices of scholarly impact, including paper impact, scholar impact, and journal impact. Besides, we summarize the issues of existing evaluation methods and indices, investigate the open issues and challenges, and provide possible solutions, including the pattern of collaboration impact, unified evaluation standards, implicit success factor mining, dynamic academic network embedding, and scholarly impact inflation. This paper should help the researchers obtaining a broader understanding of quantifying success in science, and identifying some potential research directions. © 2013 IEEE.
- Description: This work was supported in part by the Liaoning Provincial Key Research and Development Guidance Project under Grant 2018104021, and in part by the Liaoning Provincial Natural Fund Guidance Plan under Grant 20180550011.
EAGLE : contrastive learning for efficient graph anomaly detection
- Ren, Jing, Hou, Mingliang, Liu, Zhixuan, Bai, Xiaomei
- Authors: Ren, Jing , Hou, Mingliang , Liu, Zhixuan , Bai, Xiaomei
- Date: 2023
- Type: Text , Journal article
- Relation: IEEE Intelligent Systems Vol. 38, no. 2 (2023), p. 55-63
- Full Text: false
- Reviewed:
- Description: Graph anomaly detection is a popular and vital task in various real-world scenarios, which has been studied for several decades. Recently, many studies extending deep learning-based methods have shown preferable performance on graph anomaly detection. However, existing methods lack efficiency that is definitely necessary for embedded devices. Toward this end, we propose an Efficient Anomaly detection model on heterogeneous Graphs via contrastive LEarning (EAGLE) by contrasting abnormal nodes with normal ones in terms of their distances to the local context. The proposed method first samples instance pairs on meta-path level for contrastive learning. Then, a Graph AutoEncoder-based model is applied to learn informative node embeddings in an unsupervised way, which will be further combined with the discriminator to predict the anomaly scores of nodes. Experimental results show that EAGLE outperforms the state-of-the-art methods on three heterogeneous network datasets. © 2001-2011 IEEE.
Lost at starting line : predicting maladaptation of university freshmen based on educational big data
- Guo, Teng, Bai, Xiaomei, Zhen, Shihao, Abid, Shagufta, Xia, Feng
- Authors: Guo, Teng , Bai, Xiaomei , Zhen, Shihao , Abid, Shagufta , Xia, Feng
- Date: 2023
- Type: Text , Journal article
- Relation: Journal of the Association for Information Science and Technology Vol. 74, no. 1 (2023), p. 17-32
- Full Text:
- Reviewed:
- Description: The transition from secondary education to higher education could be challenging for most freshmen. For students who fail to adjust to university life smoothly, their status may worsen if the university cannot offer timely and proper guidance. Helping students adapt to university life is a long-term goal for any academic institution. Therefore, understanding the nature of the maladaptation phenomenon and the early prediction of “at-risk” students are crucial tasks that urgently need to be tackled effectively. This article aims to analyze the relevant factors that affect the maladaptation phenomenon and predict this phenomenon in advance. We develop a prediction framework (MAladaptive STudEnt pRediction, MASTER) for the early prediction of students with maladaptation. First, our framework uses the SMOTE (Synthetic Minority Oversampling Technique) algorithm to solve the data label imbalance issue. Moreover, a novel ensemble algorithm, priority forest, is proposed for outputting ranks instead of binary results, which enables us to perform proactive interventions in a prioritized manner where limited education resources are available. Experimental results on real-world education datasets demonstrate that the MASTER framework outperforms other state-of-art methods. © 2022 The Authors. Journal of the Association for Information Science and Technology published by Wiley Periodicals LLC on behalf of Association for Information Science and Technology.
- Authors: Guo, Teng , Bai, Xiaomei , Zhen, Shihao , Abid, Shagufta , Xia, Feng
- Date: 2023
- Type: Text , Journal article
- Relation: Journal of the Association for Information Science and Technology Vol. 74, no. 1 (2023), p. 17-32
- Full Text:
- Reviewed:
- Description: The transition from secondary education to higher education could be challenging for most freshmen. For students who fail to adjust to university life smoothly, their status may worsen if the university cannot offer timely and proper guidance. Helping students adapt to university life is a long-term goal for any academic institution. Therefore, understanding the nature of the maladaptation phenomenon and the early prediction of “at-risk” students are crucial tasks that urgently need to be tackled effectively. This article aims to analyze the relevant factors that affect the maladaptation phenomenon and predict this phenomenon in advance. We develop a prediction framework (MAladaptive STudEnt pRediction, MASTER) for the early prediction of students with maladaptation. First, our framework uses the SMOTE (Synthetic Minority Oversampling Technique) algorithm to solve the data label imbalance issue. Moreover, a novel ensemble algorithm, priority forest, is proposed for outputting ranks instead of binary results, which enables us to perform proactive interventions in a prioritized manner where limited education resources are available. Experimental results on real-world education datasets demonstrate that the MASTER framework outperforms other state-of-art methods. © 2022 The Authors. Journal of the Association for Information Science and Technology published by Wiley Periodicals LLC on behalf of Association for Information Science and Technology.
Multiple instance learning for cheating detection and localization in online examinations
- Liu, Yemeng, Ren, Jing, Xu, Jianshuo, Bai, Xiaomei, Kaur, Roopdeep, Xia, Feng
- Authors: Liu, Yemeng , Ren, Jing , Xu, Jianshuo , Bai, Xiaomei , Kaur, Roopdeep , Xia, Feng
- Date: 2024
- Type: Text , Journal article
- Relation: IEEE Transactions on Cognitive and Developmental Systems Vol. 16, no. 4 (2024), p. 1315-1326
- Full Text:
- Reviewed:
- Description: The spread of the Coronavirus disease-2019 epidemic has caused many courses and exams to be conducted online. The cheating behavior detection model in examination invigilation systems plays a pivotal role in guaranteeing the equality of long-distance examinations. However, cheating behavior is rare, and most researchers do not comprehensively take into account features such as head posture, gaze angle, body posture, and background information in the task of cheating behavior detection. In this article, we develop and present CHEESE, a CHEating detection framework via multiple instance learning. The framework consists of a label generator that implements weak supervision and a feature encoder to learn discriminative features. In addition, the framework combines body posture and background features extracted by 3-D convolution with eye gaze, head posture, and facial features captured by OpenFace 2.0. These features are fed into the spatiotemporal graph module by stitching to analyze the spatiotemporal changes in video clips to detect the cheating behaviors. Our experiments on three datasets, University of Central Florida (UCF)-Crime, ShanghaiTech, and online exam proctoring (OEP), prove the effectiveness of our method as compared to the state-of-the-art approaches and obtain the frame-level area under the curve (AUC) score of 87.58% on the OEP dataset. © 2016 IEEE.
- Authors: Liu, Yemeng , Ren, Jing , Xu, Jianshuo , Bai, Xiaomei , Kaur, Roopdeep , Xia, Feng
- Date: 2024
- Type: Text , Journal article
- Relation: IEEE Transactions on Cognitive and Developmental Systems Vol. 16, no. 4 (2024), p. 1315-1326
- Full Text:
- Reviewed:
- Description: The spread of the Coronavirus disease-2019 epidemic has caused many courses and exams to be conducted online. The cheating behavior detection model in examination invigilation systems plays a pivotal role in guaranteeing the equality of long-distance examinations. However, cheating behavior is rare, and most researchers do not comprehensively take into account features such as head posture, gaze angle, body posture, and background information in the task of cheating behavior detection. In this article, we develop and present CHEESE, a CHEating detection framework via multiple instance learning. The framework consists of a label generator that implements weak supervision and a feature encoder to learn discriminative features. In addition, the framework combines body posture and background features extracted by 3-D convolution with eye gaze, head posture, and facial features captured by OpenFace 2.0. These features are fed into the spatiotemporal graph module by stitching to analyze the spatiotemporal changes in video clips to detect the cheating behaviors. Our experiments on three datasets, University of Central Florida (UCF)-Crime, ShanghaiTech, and online exam proctoring (OEP), prove the effectiveness of our method as compared to the state-of-the-art approaches and obtain the frame-level area under the curve (AUC) score of 87.58% on the OEP dataset. © 2016 IEEE.
Physics-informed explainable continual learning on graphs
- Peng, Ciyuan, Tang, Tao, Yin, Qiuyang, Bai, Xiaomei, Lim, Suryani, Aggarwal, Charu
- Authors: Peng, Ciyuan , Tang, Tao , Yin, Qiuyang , Bai, Xiaomei , Lim, Suryani , Aggarwal, Charu
- Date: 2024
- Type: Text , Journal article
- Relation: IEEE Transactions on Neural Networks and Learning Systems Vol. 35, no. 9 (2024), p. 11761-11772
- Full Text:
- Reviewed:
- Description: Temporal graph learning has attracted great attention with its ability to deal with dynamic graphs. Although current methods are reasonably accurate, most of them are unexplainable due to their black-box nature. It remains a challenge to explain how temporal graph learning models adapt to information evolution. Furthermore, with the increasing application of artificial intelligence in various scientific domains, such as chemistry and biomedicine, the importance of delivering not only precise outcomes but also offering explanations regarding the learning models becomes paramount. This transparency aids users in comprehending the decision-making procedures and instills greater confidence in the generated models. To address this issue, this article proposes a novel physics-informed explainable continual learning (PiECL), focusing on temporal graphs. Our proposed method utilizes physical and mathematical algorithms to quantify the disturbance of new data to previous knowledge for obtaining changed information over time. As the proposed model is based on theories in physics, it can provide a transparent underlying mechanism for information evolution detection, thus enhancing explainability. The experimental results on three real-world datasets demonstrate that PiECL can explain the learning process, and the generated model outperforms other state-of-the-art methods. PiECL shows tremendous potential for explaining temporal graph learning in various scientific contexts. © 2012 IEEE.
- Authors: Peng, Ciyuan , Tang, Tao , Yin, Qiuyang , Bai, Xiaomei , Lim, Suryani , Aggarwal, Charu
- Date: 2024
- Type: Text , Journal article
- Relation: IEEE Transactions on Neural Networks and Learning Systems Vol. 35, no. 9 (2024), p. 11761-11772
- Full Text:
- Reviewed:
- Description: Temporal graph learning has attracted great attention with its ability to deal with dynamic graphs. Although current methods are reasonably accurate, most of them are unexplainable due to their black-box nature. It remains a challenge to explain how temporal graph learning models adapt to information evolution. Furthermore, with the increasing application of artificial intelligence in various scientific domains, such as chemistry and biomedicine, the importance of delivering not only precise outcomes but also offering explanations regarding the learning models becomes paramount. This transparency aids users in comprehending the decision-making procedures and instills greater confidence in the generated models. To address this issue, this article proposes a novel physics-informed explainable continual learning (PiECL), focusing on temporal graphs. Our proposed method utilizes physical and mathematical algorithms to quantify the disturbance of new data to previous knowledge for obtaining changed information over time. As the proposed model is based on theories in physics, it can provide a transparent underlying mechanism for information evolution detection, thus enhancing explainability. The experimental results on three real-world datasets demonstrate that PiECL can explain the learning process, and the generated model outperforms other state-of-the-art methods. PiECL shows tremendous potential for explaining temporal graph learning in various scientific contexts. © 2012 IEEE.
- «
- ‹
- 1
- ›
- »