Effects on photosynthetic response and biomass productivity of acacia longifolia ssp. longifolia under elevated CO2 and water-limited regimes
- Javaid, Muhammad, Wang, Xiukang, Florentine, Singarayer, Ashraf, Muhammad, Mahmood, Athar, Li, Feng-Min, Fiaz, Sajid
- Authors: Javaid, Muhammad , Wang, Xiukang , Florentine, Singarayer , Ashraf, Muhammad , Mahmood, Athar , Li, Feng-Min , Fiaz, Sajid
- Date: 2022
- Type: Text , Journal article
- Relation: Frontiers in Plant Science Vol. 13, no. (2022), p.
- Full Text:
- Reviewed:
- Description: It is known that the impact of elevated CO2 (eCO2) will cause differential photosynthetic responses in plants, resulting in varying magnitudes of growth and productivity of competing species. Because of the aggressive invasive nature of Acacia longifolia ssp. longifolia, this study is designed to investigate the effect of eCO2 on gas exchange parameters, water use efficiency, photosystem II (PSII) activities, and growth of this species. Plants of A. longifolia ssp. longifolia were grown at 400 ppm (ambient) and 700 ppm (elevated) CO2 under 100 and 60% field capacity. Leaf gas exchange parameters, water use efficiency, intrinsic water use efficiency, instantaneous carboxylation efficiency, and PSII activity were measured for 10 days at 2-day intervals. eCO2 mitigated the adverse effects of drought conditions on the aforementioned parameters compared to that grown under ambient CO2 (aCO2) conditions. A. longifolia, grown under drought conditions and re-watered at day 8, indicated a partial recovery in most of the parameters measured, suggesting that the recovery of this species under eCO2 will be higher than that with aCO2 concentration. This gave an increase in water use efficiency, which is one of the reasons for the observed enhanced growth of A. longifolia under drought stress. Thus, eCO2 will allow to adopt this species in the new environment, even under severe climatic conditions, and foreshadow its likelihood of invasion into new areas. Copyright © 2022 Javaid, Wang, Florentine, Ashraf, Mahmood, Li and Fiaz.
- Authors: Javaid, Muhammad , Wang, Xiukang , Florentine, Singarayer , Ashraf, Muhammad , Mahmood, Athar , Li, Feng-Min , Fiaz, Sajid
- Date: 2022
- Type: Text , Journal article
- Relation: Frontiers in Plant Science Vol. 13, no. (2022), p.
- Full Text:
- Reviewed:
- Description: It is known that the impact of elevated CO2 (eCO2) will cause differential photosynthetic responses in plants, resulting in varying magnitudes of growth and productivity of competing species. Because of the aggressive invasive nature of Acacia longifolia ssp. longifolia, this study is designed to investigate the effect of eCO2 on gas exchange parameters, water use efficiency, photosystem II (PSII) activities, and growth of this species. Plants of A. longifolia ssp. longifolia were grown at 400 ppm (ambient) and 700 ppm (elevated) CO2 under 100 and 60% field capacity. Leaf gas exchange parameters, water use efficiency, intrinsic water use efficiency, instantaneous carboxylation efficiency, and PSII activity were measured for 10 days at 2-day intervals. eCO2 mitigated the adverse effects of drought conditions on the aforementioned parameters compared to that grown under ambient CO2 (aCO2) conditions. A. longifolia, grown under drought conditions and re-watered at day 8, indicated a partial recovery in most of the parameters measured, suggesting that the recovery of this species under eCO2 will be higher than that with aCO2 concentration. This gave an increase in water use efficiency, which is one of the reasons for the observed enhanced growth of A. longifolia under drought stress. Thus, eCO2 will allow to adopt this species in the new environment, even under severe climatic conditions, and foreshadow its likelihood of invasion into new areas. Copyright © 2022 Javaid, Wang, Florentine, Ashraf, Mahmood, Li and Fiaz.
Securing smart healthcare cyber-physical systems against blackhole and greyhole attacks using a blockchain-enabled gini index framework
- Javed, Mannan, Tariq, Noshina, Ashraf, Muhammad, Khan, Farrukh, Asim, Muhammad, Imran, Muhammad
- Authors: Javed, Mannan , Tariq, Noshina , Ashraf, Muhammad , Khan, Farrukh , Asim, Muhammad , Imran, Muhammad
- Date: 2023
- Type: Text , Journal article
- Relation: Sensors Vol. 23, no. 23 (2023), p.
- Full Text:
- Reviewed:
- Description: The increasing reliance on cyber-physical systems (CPSs) in critical domains such as healthcare, smart grids, and intelligent transportation systems necessitates robust security measures to protect against cyber threats. Among these threats, blackhole and greyhole attacks pose significant risks to the availability and integrity of CPSs. The current detection and mitigation approaches often struggle to accurately differentiate between legitimate and malicious behavior, leading to ineffective protection. This paper introduces Gini-index and blockchain-based Blackhole/Greyhole RPL (GBG-RPL), a novel technique designed for efficient detection and mitigation of blackhole and greyhole attacks in smart health monitoring CPSs. GBG-RPL leverages the analytical prowess of the Gini index and the security advantages of blockchain technology to protect these systems against sophisticated threats. This research not only focuses on identifying anomalous activities but also proposes a resilient framework that ensures the integrity and reliability of the monitored data. GBG-RPL achieves notable improvements as compared to another state-of-the-art technique referred to as BCPS-RPL, including a 7.18% reduction in packet loss ratio, an 11.97% enhancement in residual energy utilization, and a 19.27% decrease in energy consumption. Its security features are also very effective, boasting a 10.65% improvement in attack-detection rate and an 18.88% faster average attack-detection time. GBG-RPL optimizes network management by exhibiting a 21.65% reduction in message overhead and a 28.34% decrease in end-to-end delay, thus showing its potential for enhanced reliability, efficiency, and security. © 2023 by the authors.
- Authors: Javed, Mannan , Tariq, Noshina , Ashraf, Muhammad , Khan, Farrukh , Asim, Muhammad , Imran, Muhammad
- Date: 2023
- Type: Text , Journal article
- Relation: Sensors Vol. 23, no. 23 (2023), p.
- Full Text:
- Reviewed:
- Description: The increasing reliance on cyber-physical systems (CPSs) in critical domains such as healthcare, smart grids, and intelligent transportation systems necessitates robust security measures to protect against cyber threats. Among these threats, blackhole and greyhole attacks pose significant risks to the availability and integrity of CPSs. The current detection and mitigation approaches often struggle to accurately differentiate between legitimate and malicious behavior, leading to ineffective protection. This paper introduces Gini-index and blockchain-based Blackhole/Greyhole RPL (GBG-RPL), a novel technique designed for efficient detection and mitigation of blackhole and greyhole attacks in smart health monitoring CPSs. GBG-RPL leverages the analytical prowess of the Gini index and the security advantages of blockchain technology to protect these systems against sophisticated threats. This research not only focuses on identifying anomalous activities but also proposes a resilient framework that ensures the integrity and reliability of the monitored data. GBG-RPL achieves notable improvements as compared to another state-of-the-art technique referred to as BCPS-RPL, including a 7.18% reduction in packet loss ratio, an 11.97% enhancement in residual energy utilization, and a 19.27% decrease in energy consumption. Its security features are also very effective, boasting a 10.65% improvement in attack-detection rate and an 18.88% faster average attack-detection time. GBG-RPL optimizes network management by exhibiting a 21.65% reduction in message overhead and a 28.34% decrease in end-to-end delay, thus showing its potential for enhanced reliability, efficiency, and security. © 2023 by the authors.
Photosynthetic activity and water use efficiency of Salvia verbenaca L. under elevated CO2 and water‐deficit conditions
- Javaid, Muhammad, Florentine, Singarayer, Ashraf, Muhammad, Mahmood, Athar, Sattar, Abdul, Wasaya, Allah, Li, Feng‐Min
- Authors: Javaid, Muhammad , Florentine, Singarayer , Ashraf, Muhammad , Mahmood, Athar , Sattar, Abdul , Wasaya, Allah , Li, Feng‐Min
- Date: 2022
- Type: Text , Journal article
- Relation: Journal of agronomy and crop science Vol. 208, no. 4 (2022), p. 536-551
- Full Text:
- Reviewed:
- Description: Investigating the combined effects of elevated CO2 concentration and water‐deficit on weed plants is crucial to gaining a thorough understanding of plant performance and modifying agricultural processes under changing climate conditions. This study examined the effect of elevated CO2 concentration and water‐deficit conditions on leaf gas exchange, water use efficiency, carboxylation efficiency and the photosystem II (PSII) activity of two Salvia verbenaca L., varieties. These varieties were grown under two CO2 concentrations (ambient conditions of 400 ppm and elevated conditions of 700 ppm) and two water regimes (well‐watered [100% field capacity] and water‐deficit conditions [60% field capacity]) in laboratory growth chambers. For 12 days, at 2‐day intervals, (i) leaf gas exchange parameters (photosynthesis rate, stomatal conductance, transpiration rate (E) and intercellular CO2 concentration (Ci)), (ii) water use efficiency (WUE), (iii) intrinsic water use efficiency (IWUE), (iv) instantaneous carboxylation efficiency and (v) PSII activity (fluorescence, quantum yield of PSII, photochemical efficiency of PSII, photochemical quenching and photosynthetic electron transport) were measured. Water‐deficit conditions had negative effects on studied parameters of both varieties, whereas elevated CO2 concentration had positive effects on the gas exchange, water use efficiency and PSII activity of both. Salvia verbenaca varieties grown under water‐deficit conditions from Day 0 to Day 5 showed a partial recovery in most of the parameters when the resumption of the well‐watered regime was reinstituted on Day 6. Salvia verbenaca varieties grown under water‐deficit conditions were re‐watered on day 6 and indicated a partial recovery in all the parameters. A comparison of the two varieties showed that var. vernalis recorded higher values of gas exchange, quantum yield of PSII and photochemical efficiency of PSII than var. verbenaca, but the water use efficiency of var. verbenaca was higher than that of var. vernalis. These differences serve to illustrate the complexity of such studies and suggest that a detailed understanding of the nature of weed infestations is essential if optimum management control is to be practiced. Elevated CO2 concentration mitigated the adverse effects of water‐deficit conditions and thereby enhanced the adaptive mechanism of this weed by improving its water use efficiency. It is thus likely that S. verbenaca has the potential to take advantage of climate change by increasing its relative competitiveness with other plants in drought‐prone areas, suggesting that it could significantly expand its invasive range under such conditions.
- Authors: Javaid, Muhammad , Florentine, Singarayer , Ashraf, Muhammad , Mahmood, Athar , Sattar, Abdul , Wasaya, Allah , Li, Feng‐Min
- Date: 2022
- Type: Text , Journal article
- Relation: Journal of agronomy and crop science Vol. 208, no. 4 (2022), p. 536-551
- Full Text:
- Reviewed:
- Description: Investigating the combined effects of elevated CO2 concentration and water‐deficit on weed plants is crucial to gaining a thorough understanding of plant performance and modifying agricultural processes under changing climate conditions. This study examined the effect of elevated CO2 concentration and water‐deficit conditions on leaf gas exchange, water use efficiency, carboxylation efficiency and the photosystem II (PSII) activity of two Salvia verbenaca L., varieties. These varieties were grown under two CO2 concentrations (ambient conditions of 400 ppm and elevated conditions of 700 ppm) and two water regimes (well‐watered [100% field capacity] and water‐deficit conditions [60% field capacity]) in laboratory growth chambers. For 12 days, at 2‐day intervals, (i) leaf gas exchange parameters (photosynthesis rate, stomatal conductance, transpiration rate (E) and intercellular CO2 concentration (Ci)), (ii) water use efficiency (WUE), (iii) intrinsic water use efficiency (IWUE), (iv) instantaneous carboxylation efficiency and (v) PSII activity (fluorescence, quantum yield of PSII, photochemical efficiency of PSII, photochemical quenching and photosynthetic electron transport) were measured. Water‐deficit conditions had negative effects on studied parameters of both varieties, whereas elevated CO2 concentration had positive effects on the gas exchange, water use efficiency and PSII activity of both. Salvia verbenaca varieties grown under water‐deficit conditions from Day 0 to Day 5 showed a partial recovery in most of the parameters when the resumption of the well‐watered regime was reinstituted on Day 6. Salvia verbenaca varieties grown under water‐deficit conditions were re‐watered on day 6 and indicated a partial recovery in all the parameters. A comparison of the two varieties showed that var. vernalis recorded higher values of gas exchange, quantum yield of PSII and photochemical efficiency of PSII than var. verbenaca, but the water use efficiency of var. verbenaca was higher than that of var. vernalis. These differences serve to illustrate the complexity of such studies and suggest that a detailed understanding of the nature of weed infestations is essential if optimum management control is to be practiced. Elevated CO2 concentration mitigated the adverse effects of water‐deficit conditions and thereby enhanced the adaptive mechanism of this weed by improving its water use efficiency. It is thus likely that S. verbenaca has the potential to take advantage of climate change by increasing its relative competitiveness with other plants in drought‐prone areas, suggesting that it could significantly expand its invasive range under such conditions.
- «
- ‹
- 1
- ›
- »