Size-dependent characterisation of historical gold mine wastes to examine human pathways of exposure to arsenic and other potentially toxic elements
- Authors: Martin, Rachael , Dowling, Kim , Pearce, Dora , Florentine, Singarayer , Bennett, John , Stopic, Attila
- Date: 2016
- Type: Text , Journal article
- Relation: Environmental Geochemistry and Health Vol. 38, no. 5 (2016), p. 1097-1114
- Full Text: false
- Reviewed:
- Description: Abandoned historical gold mining wastes often exist as geographically extensive, unremediated, and poorly contained deposits that contain elevated levels of As and other potentially toxic elements (PTEs). One of the key variables governing human exposure to PTEs in mine waste is particle size. By applying a size-resolved approach to mine waste characterisation, this study reports on the proportions of mine waste relevant to human exposure and mobility, as well as their corresponding PTE concentrations, in four distinct historical mine wastes from the gold province in Central Victoria, Australia. To the best of our knowledge, such a detailed investigation and comparison of historical mining wastes has not been conducted in this mining-affected region. Mass distribution analysis revealed notable proportions of waste material in the readily ingestible size fraction (aecurrency sign250 A mu m; 36.1-75.6 %) and the dust size fraction (aecurrency sign100 A mu m; 5.9-45.6 %), suggesting a high potential for human exposure and dust mobilisation. Common to all mine waste types were statistically significant inverse trends between particle size and levels of As and Zn. Enrichment of As in the finest investigated size fraction (aecurrency sign53 A mu m) is of particular concern as these particles are highly susceptible to long-distance atmospheric transport. Human populations that reside in the prevailing wind direction from a mine waste deposit may be at risk of As exposure via inhalation and/or ingestion pathways. Enrichment of PTEs in the finer size fractions indicates that human health risk assessments based on bulk contaminant concentrations may underestimate potential exposure intensities.
Health effects associated with inhalation of airborne arsenic arising from mining operations
- Authors: Martin, Rachael , Dowling, Kim , Pearce, Dora , Sillitoe, Jim , Florentine, Singarayer
- Date: 2014
- Type: Text , Journal article
- Relation: Geosciences (Switzerland) Vol. 4, no. 3 (2014), p. 128-175
- Full Text:
- Reviewed:
- Description: Arsenic in dust and aerosol generated by mining, mineral processing and metallurgical extraction industries, is a serious threat to human populations throughout the world. Major sources of contamination include smelting operations, coal combustion, hard rock mining, as well as their associated waste products, including fly ash, mine wastes and tailings. The number of uncontained arsenic-rich mine waste sites throughout the world is of growing concern, as is the number of people at risk of exposure. Inhalation exposures to arsenic-bearing dusts and aerosol, in both occupational and environmental settings, have been definitively linked to increased systemic uptake, as well as carcinogenic and non-carcinogenic health outcomes. It is therefore becoming increasingly important to identify human populations and sensitive sub-populations at risk of exposure, and to better understand the modes of action for pulmonary arsenic toxicity and carcinogenesis. In this paper we explore the contribution of smelting, coal combustion, hard rock mining and their associated waste products to atmospheric arsenic. We also report on the current understanding of the health effects of inhaled arsenic, citing results from various toxicological, biomedical and epidemiological studies. This review is particularly aimed at those researchers engaged in the distinct, but complementary areas of arsenic research within the multidisciplinary field of medical geology. © 2014 by the authors; licensee MDPI, Basel, Switzerland.