Significance level of a query for enterprise data
- Authors: Thi Ngoc Dinh, Loan , Karmakar, Gour , Kamruzzaman, Joarder , Stranieri, Andrew , Das, Rajkumar
- Date: 2017
- Type: Text , Conference proceedings
- Relation: 30th International Business Information Management Association Conference - Vision 2020: Sustainable Economic development, Innovation Management, and Global Growth, IBIMA 2017; Madrid, Spain; 8th-9th November 2017 Vol. 2017-January, p. 4494-4504
- Full Text: false
- Reviewed:
- Description: To operate enterprise activities, a large number of queries need to be processed every day through an enterprise system. Consequently, such a system frequently faces hugely overloaded information and incurs high delay in producing query responses for big data. This is because, traditional queries are normally treated with equal importance. With the advent of big data and its use in enterprise systems and the growth of process complexity, the traditional approach of query processing is no more suitable as it does not consider semantic information and captures all data irrespective of their relevance to a business organization, which eventually increases the computational time in both big data collection and analysis. The significance level of a query can make a trade-off between query response delay and the extent of data collection and analysis. This motivates us to concentrate on determining the significance level of a query considering its importance to an enterprise system. To our knowledge, no such approach is available in the literature. To bridge this research gap, this paper, for the first time, proposes an approach to determine the significance level of a query to prioritize them with the relevance to a business organization. As business processes play key roles in any enterprise system and all business processes are not equally important, this is done by determining the semantic similarity between a query and the processes of a business organization and the importance of a business process to that organization. With a case study on an enterprise system of a retail company, the results produced by our proposed approach have shown that significance level is higher for more important queries compared to the less important ones.
A rule based inference model to establish strategy-process relationship
- Authors: Dinh, Loan , Karmakar, Gour , Kamruzzaman, Joarder , Stranieri, Andrew
- Date: 2017
- Type: Text , Conference proceedings
- Relation: 30th International Business Information Management Association Conference - Vision 2020: Sustainable Economic development, Innovation Management, and Global Growth, IBIMA 2017; Madrid, Spain; 8th-9th November 2017 Vol. 2017-January, p. 4544-4556
- Full Text: false
- Reviewed:
- Description: An effective relationship between business processes and their relevant strategies helps enterprises achieve their goals. As a business organisation changes quickly, business processes implement their relevant business operations for efficiency. It is important to know which business process achieves which business strategies dynamically. To the best of our knowledge, there exists a framework which aims to automatically determine the strategy-process relationship (Morrison et al. 2011). However, this framework can only work when the effect of the business process is known, but it is difficult to determine such effect accurately. Moreover, by optimising business processes to satisfy business strategies, higher efficiency may be achieved but there is a high chance of losing discriminative information. It therefore creates certain level of uncertainty in achieving accurate strategy-process relationship. To reduce this uncertainty and determine the relationship accurately between business processes and their relevant strategies as defined by business domain experts, in this paper, we introduce a rule-based inference model. This model not only helps business organisations realize which business processes need to be involved for the organisation to achieve their goals when strategies are made, but also reduces the possibility of losing important details from business process optimisation. We have developed a business case to validate our proposed model and the results show that our model can infer the relation accurately for each rule defined for the related business case.