A patient agent to manage blockchains for remote patient monitoring
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2018
- Type: Text , Conference proceedings
- Relation: 7th International Conference on Global Telehealth, GT 2018; Colombo, Sri Lanka; 10th-11th October 2018; published in Studies in Health Technology and Informatics Vol. 254, p. 105-115
- Full Text: false
- Reviewed:
- Description: Continuous monitoring of patient's physiological signs has the potential to augment traditional medical practice, particularly in developing countries that have a shortage of healthcare professionals. However, continuously streamed data presents additional security, storage and retrieval challenges and further inhibits initiatives to integrate data to form electronic health record systems. Blockchain technologies enable data to be stored securely and inexpensively without recourse to a trusted authority. Blockchain technologies also promise to provide architectures for electronic health records that do not require huge government expenditure that challenge developing nations. However, Blockchain deployment, particularly with streamed data challenges existing Blockchain algorithms that take too long to place data in a block, and have no mechanism to determine whether every data point in every stream should be stored in such a secure way. This article presents an architecture that involves a Patient Agent, coordinating the insertion of continuous data streams into Blockchains to form an electronic health record.
- Description: Studies in Health Technology and Informatics
A Decentralized Patient Agent Controlled Blockchain for Remote Patient Monitoring
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2019
- Type: Text , Conference proceedings
- Relation: 15th International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob 2019 Vol. 2019-October, p. 207-214
- Full Text: false
- Reviewed:
- Description: Blockchain emerging for healthcare provides a secure, decentralized and patient driven record management system. However, the storage of data generated from IoT devices in remote patient management applications requires a fast consensus mechanism. In this paper, we propose a lightweight consensus mechanism and a decentralized patient software agent to control a remote patient monitoring (RPM) system. The decentralized RPM architecture includes devices at three levels; 1) Body Area Sensor Network-medical sensors typically on or in patient's body transmitting data to a Smartphone, 2) Fog/Edge, and 3) Cloud. We propose that a Patient Agent(PA) software replicated on the Smartphone, Fog and Cloud servers processes medical data to ensure reliable, secure and private communication. Performance analysis has been conducted to demonstrate the feasibility of the proposed Blockchain leveraged, distributed Patient Agent controlled remote patient monitoring system. © 2019 IEEE.
- Description: E1
Blockchain leveraged task migration in body area sensor networks
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2019
- Type: Text , Conference proceedings , Conference paper
- Relation: 25th Asia-Pacific Conference on Communications, APCC 2019 p. 177-184
- Full Text:
- Reviewed:
- Description: Blockchain technologies emerging for healthcare support secure health data sharing with greater interoperability among different heterogeneous systems. However, the collection and storage of data generated from Body Area Sensor Net-works(BASN) for migration to high processing power computing services requires an efficient BASN architecture. We present a decentralized BASN architecture that involves devices at three levels; 1) Body Area Sensor Network-medical sensors typically on or in patient's body transmitting data to a Smartphone, 2) Fog/Edge, and 3) Cloud. We propose that a Patient Agent(PA) replicated on the Smartphone, Fog and Cloud servers processes medical data and execute a task offloading algorithm by leveraging a Blockchain. Performance analysis is conducted to demonstrate the feasibility of the proposed Blockchain leveraged, distributed Patient Agent controlled BASN. © 2019 IEEE.
- Description: E1