Data sharing in secure multimedia wireless sensor networks
- Authors: Usman, Muhammad , Jan, Mian , Xiangjian, He , Nanda, Priyadarsi
- Date: 2016
- Type: Text , Conference proceedings
- Relation: 2016 IEEE Trustcom/BigDataSE/ISPA;Tianjin, China; 23-26 August 2016 p. 590-597
- Full Text: false
- Reviewed:
- Description: The use of Multimedia Wireless Sensor Networks (MWSNs) is becoming common nowadays with a rapid growth in communication facilities. Similar to any other WSNs, these networks face various challenges while providing security, trust and privacy for user data. Provisioning of the aforementioned services become an uphill task especially while dealing with real-time streaming data. These networks operates with resource-constrained sensor nodes for days, months and even years depending on the nature of an application. The resource-constrained nature of these networks makes it difficult for the nodes to tackle real-time data in mission-critical applications such as military surveillance, forest fire monitoring, health-care and industrial automation. For a secured MWSN, the transmission and processing of streaming data needs to be explored deeply. The conventional data authentication schemes are not suitable for MWSNs due to the limitations imposed on sensor nodes in terms of battery power, computation, available bandwidth and storage. In this paper, we propose a novel quality-driven clustering-based technique for authenticating streaming data in MWSNs. Nodes with maximum energy are selected as Cluster Heads (CHs). The CHs collect data from member nodes and forward it to the Base Station (BS), thus preventing member nodes with low energy from dying soon and increasing life span of the underlying network. The proposed approach not only authenticates the streaming data but also maintains the quality of transmitted data. The proposed data authentication scheme coupled with an Error Concealment technique provides an energy-efficient and distortion-free real-time data streaming. The proposed scheme is compared with an unsupervised resources scenario. The simulation results demonstrate better network lifetime along with 21.34 dB gain in Peak Signal-to-Noise Ratio (PSNR) of received video data streams.
PAWN: a payload‐based mutual authentication scheme for wireless sensor networks
- Authors: Jan, Mian , Nanda, Priyadarsi , Usman, Muhammad , He, Xiangjian
- Date: 2017
- Type: Text , Journal article
- Relation: Concurrency and computation Vol. 29, no. 17 (2017), p. e3986-n/a
- Full Text: false
- Reviewed:
- Description: Summary Wireless sensor networks (WSNs) consist of resource‐starving miniature sensor nodes deployed in a remote and hostile environment. These networks operate on small batteries for days, months, and even years depending on the requirements of monitored applications. The battery‐powered operation and inaccessible human terrains make it practically infeasible to recharge the nodes unless some energy‐scavenging techniques are used. These networks experience threats at various layers and, as such, are vulnerable to a wide range of attacks. The resource‐constrained nature of sensor nodes, inaccessible human terrains, and error‐prone communication links make it obligatory to design lightweight but robust and secured schemes for these networks. In view of these limitations, we aim to design an extremely lightweight payload‐based mutual authentication scheme for a cluster‐based hierarchical WSN. The proposed scheme, also known as payload‐based mutual authentication for WSNs, operates in 2 steps. First, an optimal percentage of cluster heads is elected, authenticated, and allowed to communicate with neighboring nodes. Second, each cluster head, in a role of server, authenticates the nearby nodes for cluster formation. We validate our proposed scheme using various simulation metrics that outperform the existing schemes.