A new auxiliary function method for systems of nonlinear equations
- Authors: Wu, Zhiyou , Bai, Fusheng , Li, Guoquan , Yang, Yongjian
- Date: 2014
- Type: Text , Journal article
- Relation: Journal of Industrial and Management Optimization Vol. 11, no. 2 (2014), p. 345-364
- Full Text: false
- Reviewed:
- Description: In this paper, we present a new global optimization method to solve nonlinear systems of equations. We reformulate given system of nonlinear equations as a global optimization problem and then give a new auxiliary function method to solve the reformulated global optimization problem. The new auxiliary function proposed in this paper can be a filled function, a quasifilled function or a strict filled function with appropriately chosen parameters. Several numerical examples are presented to illustrate the effciency of the present approach.
Global optimality conditions for some classes of polynomial integer programming problems
- Authors: Quan, Jing , Wu, Zhiyou , Li, Guoquan
- Date: 2011
- Type: Text , Journal article
- Relation: Journal of Industrial and Management Optimization Vol. 7, no. 1 (2011), p. 67-78
- Full Text:
- Reviewed:
- Description: In this paper, some verifiable necessary global optimality conditions and sufficient global optimality conditions for some classes of polynomial integer programming problems are established. The relationships between these necessary global optimality conditions and these sufficient global optimality conditions are also discussed. The main theoretical tool for establishing these optimality conditions is abstract convexity.
Sufficient conditions for global optimality of semidefinite optimization
- Authors: Quan, Jing , Wu, Zhiyou , Li, Guoquan , Wu, Ou
- Date: 2012
- Type: Text , Journal article
- Relation: Journal of Inequalities and Applications Vol. 2012, no. 108
- Full Text:
- Reviewed:
- Description: In this article, by using the Lagrangian function, we investigate the sufficient global optimality conditions for a class of semi-definite optimization problems, where the objective function are general nonlinear, the variables are mixed integers subject to linear matrix inequalities (LMIs) constraints as well as bounded constraints. In addition, the sufficient global optimality conditions for general nonlinear programming problems are derived, where the variables satisfy LMIs constraints and box constraints or bivalent constraints. Furthermore, we give the sufficient global optimality conditions for standard semi-definite programming problem, where the objective function is linear, the variables satisfy linear inequalities constraints and box constraints. © 2012 Quan et al.