Your selections:

3Cluster analysis
20102 Applied Mathematics
20103 Numerical and Computational Mathematics
20802 Computation Theory and Mathematics
2DC programming
2Nonsmooth optimization
2Prediction models
2Rainfall prediction
10299 Other Physical Sciences
10401 Atmospheric Sciences
1Adaptation
1Clusterwise linear regression
1Dimension reduction
1L error
1L2 error
1MD Multidisciplinary
1Nonparametric regression
1Prediction performance
1Random variables

Show More

Show Less

Format Type

Prediction of monthly rainfall in Victoria, Australia : Clusterwise linear regression approach

- Bagirov, Adil, Mahmood, Arshad, Barton, Andrew

**Authors:**Bagirov, Adil , Mahmood, Arshad , Barton, Andrew**Date:**2017**Type:**Text , Journal article**Relation:**Atmospheric Research Vol. 188, no. (2017), p. 20-29**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:**false**Reviewed:****Description:**This paper develops the Clusterwise Linear Regression (CLR) technique for prediction of monthly rainfall. The CLR is a combination of clustering and regression techniques. It is formulated as an optimization problem and an incremental algorithm is designed to solve it. The algorithm is applied to predict monthly rainfall in Victoria, Australia using rainfall data with five input meteorological variables over the period of 1889–2014 from eight geographically diverse weather stations. The prediction performance of the CLR method is evaluated by comparing observed and predicted rainfall values using four measures of forecast accuracy. The proposed method is also compared with the CLR using the maximum likelihood framework by the expectation-maximization algorithm, multiple linear regression, artificial neural networks and the support vector machines for regression models using computational results. The results demonstrate that the proposed algorithm outperforms other methods in most locations. © 2017 Elsevier B.V.

Estimation of a regression function by maxima of minima of linear functions

- Bagirov, Adil, Clausen, Conny, Kohler, Michael

**Authors:**Bagirov, Adil , Clausen, Conny , Kohler, Michael**Date:**2009**Type:**Text , Journal article**Relation:**IEEE Transactions on Information Theory Vol. 55, no. 2 (2009), p. 833-845**Full Text:****Reviewed:****Description:**In this paper, estimation of a regression function from independent and identically distributed random variables is considered. Estimates are defined by minimization of the empirical L2 risk over a class of functions, which are defined as maxima of minima of linear functions. Results concerning the rate of convergence of the estimates are derived. In particular, it is shown that for smooth regression functions satisfying the assumption of single index models, the estimate is able to achieve (up to some logarithmic factor) the corresponding optimal one-dimensional rate of convergence. Hence, under these assumptions, the estimate is able to circumvent the so-called curse of dimensionality. The small sample behavior of the estimates is illustrated by applying them to simulated data. © 2009 IEEE.

**Authors:**Bagirov, Adil , Clausen, Conny , Kohler, Michael**Date:**2009**Type:**Text , Journal article**Relation:**IEEE Transactions on Information Theory Vol. 55, no. 2 (2009), p. 833-845**Full Text:****Reviewed:****Description:**In this paper, estimation of a regression function from independent and identically distributed random variables is considered. Estimates are defined by minimization of the empirical L2 risk over a class of functions, which are defined as maxima of minima of linear functions. Results concerning the rate of convergence of the estimates are derived. In particular, it is shown that for smooth regression functions satisfying the assumption of single index models, the estimate is able to achieve (up to some logarithmic factor) the corresponding optimal one-dimensional rate of convergence. Hence, under these assumptions, the estimate is able to circumvent the so-called curse of dimensionality. The small sample behavior of the estimates is illustrated by applying them to simulated data. © 2009 IEEE.

A comparative assessment of models to predict monthly rainfall in Australia

- Bagirov, Adil, Mahmood, Arshad

**Authors:**Bagirov, Adil , Mahmood, Arshad**Date:**2018**Type:**Text , Journal article**Relation:**Water Resources Management Vol. 32, no. 5 (2018), p. 1777-1794**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:**false**Reviewed:****Description:**Accurate rainfall prediction is a challenging task. It is especially challenging in Australia where the climate is highly variable. Australia’s climatic zones range from high rainfall tropical regions in the north to the driest desert region in the interior. The performance of prediction models may vary depending on climatic conditions. It is, therefore, important to assess and compare the performance of these models in different climatic zones. This paper examines the performance of data driven models such as the support vector machines for regression, the multiple linear regression, the k-nearest neighbors and the artificial neural networks for monthly rainfall prediction in Australia depending on climatic conditions. Rainfall data with five meteorological variables over the period of 1970–2014 from 24 geographically diverse weather stations are used for this purpose. The prediction performance of each model was evaluated by comparing observed and predicted rainfall using various measures for prediction accuracy. © 2018, Springer Science+Business Media B.V., part of Springer Nature.

**Authors:**Bagirov, Adil , Ugon, Julien**Date:**2018**Type:**Text , Journal article**Relation:**Optimization Methods and Software Vol. 33, no. 1 (2018), p. 194-219**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:**false**Reviewed:****Description:**The clusterwise linear regression problem is formulated as a nonsmooth nonconvex optimization problem using the squared regression error function. The objective function in this problem is represented as a difference of convex functions. Optimality conditions are derived, and an algorithm is designed based on such a representation. An incremental approach is proposed to generate starting solutions. The algorithm is tested on small to large data sets. © 2017 Informa UK Limited, trading as Taylor & Francis Group.

**Authors:**Bagirov, Adil , Ugon, Julien**Date:**2018**Type:**Text , Journal article**Relation:**Optimization Methods and Software Vol. 33, no. 1 (2018), p. 194-219**Full Text:**false**Reviewed:****Description:**The clusterwise linear regression problem is formulated as a nonsmooth nonconvex optimization problem using the squared regression error function. The objective function in this problem is represented as a difference of convex functions. Optimality conditions are derived, and an algorithm is designed based on such a representation. An incremental approach is proposed to generate starting solutions. The algorithm is tested on small to large data sets.

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?