Your selections:

5Lin, Yuqing
4Balbuena, Camino
3Nguyen, Minh Hoang
3Ryan, Joe
2Baca, Martin
2Barker, Ewan
2Gimbert, Joan
2Sugeng, Kiki Ariyanti
1Baskoro, Edy
1Cholily, Yus Mochamad
1Das, K. C.
1Jendrol, Stanislav
1Lopez, Nacho
1Marcote, Xavier
1Simanjuntak, Rinovia
1Slamin,
1Tkac, M.
1Youssef, Maged

Show More

Show Less

7Graph theory
3Moore bound
3Number theory
2Connectivity
2Integer programming
2Labeling
2Numerical methods
2Problem solving
2Vertex connectivity
1(k,g)-cage
1Almost Moore digraph
1Boundary value problems
1Cages
1Communication networks
1Computation theory
1Computational complexity
1Consecutive magic labeling
1Cutset
1Degree diameter problems

Show More

Show Less

Format Type

Characterization of eccentric digraphs

- Gimbert, Joan, Lopez, Nacho, Miller, Mirka, Ryan, Joe

**Authors:**Gimbert, Joan , Lopez, Nacho , Miller, Mirka , Ryan, Joe**Date:**2006**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 306, no. 2 (2006), p. 210-219**Full Text:**false**Reviewed:****Description:**The eccentric digraph ED(G) of a digraph G represents the binary relation, defined on the vertex set of G, of being 'eccentric'; that is, there is an arc from u to v in ED(G) if and only if v is at maximum distance from u in G. A digraph G is said to be eccentric if there exists a digraph H such that G=ED(H). This paper is devoted to the study of the following two questions: what digraphs are eccentric and when the relation of being eccentric is symmetric. We present a characterization of eccentric digraphs, which in the undirected case says that a graph G is eccentric iff its complement graph G is either self-centered of radius two or it is the union of complete graphs. As a consequence, we obtain that all trees except those with diameter 3 are eccentric digraphs. We also determine when ED(G) is symmetric in the cases when G is a graph or a digraph that is not strongly connected. Crown Copyright © 2006 Published by Elsevier B.V. All rights reserved.**Description:**C1**Description:**2003001601

Enumerations of vertex orders of almost Moore digraphs with selfrepeats

- Baskoro, Edy, Cholily, Yus Mochamad, Miller, Mirka

**Authors:**Baskoro, Edy , Cholily, Yus Mochamad , Miller, Mirka**Date:**2008**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 308, no. 1 (2008), p. 123-128**Full Text:**false**Reviewed:****Description:**An almost Moore digraph G of degree d > 1, diameter k > 1 is a diregular digraph with the number of vertices one less than the Moore bound. If G is an almost Moore digraph, then for each vertex u ∈ V (G) there exists a vertex v ∈ V (G), called repeat of u and denoted by r (u) = v, such that there are two walks of length ≤ k from u to v. The smallest positive integer p such that the composition rp (u) = u is called the order of u. If the order of u is 1 then u is called a selfrepeat. It is known that if G is an almost Moore digraph of diameter k ≥ 3 then G contains exactly k selfrepeats or none. In this paper, we propose an exact formula for the number of all vertex orders in an almost Moore digraph G containing selfrepeats, based on the vertex orders of the out-neighbours of any selfrepeat vertex. © 2007 Elsevier B.V. All rights reserved.**Description:**C1

On the degrees of a strongly vertex-magic graph

- Balbuena, Camino, Barker, Ewan, Das, K. C., Lin, Yuqing, Miller, Mirka, Ryan, Joe, Slamin,, Sugeng, Kiki Ariyanti, Tkac, M.

**Authors:**Balbuena, Camino , Barker, Ewan , Das, K. C. , Lin, Yuqing , Miller, Mirka , Ryan, Joe , Slamin, , Sugeng, Kiki Ariyanti , Tkac, M.**Date:**2006**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 306, no. 6 (2006), p. 539-551**Full Text:**false**Reviewed:****Description:**Let G=(V,E) be a finite graph, where |V|=n≥2 and |E|=e≥1. A vertex-magic total labeling is a bijection λ from V∪E to the set of consecutive integers {1,2,...,n+e} with the property that for every v∈V, λ(v)+∑w∈N(v)λ(vw)=h for some constant h. Such a labeling is strong if λ(V)={1,2,...,n}. In this paper, we prove first that the minimum degree of a strongly vertex-magic graph is at least two. Next, we show that if 2e≥10n2-6n+1, then the minimum degree of a strongly vertex-magic graph is at least three. Further, we obtain upper and lower bounds of any vertex degree in terms of n and e. As a consequence we show that a strongly vertex-magic graph is maximally edge-connected and hamiltonian if the number of edges is large enough. Finally, we prove that semi-regular bipartite graphs are not strongly vertex-magic graphs, and we provide strongly vertex-magic total labeling of certain families of circulant graphs. © 2006 Elsevier B.V. All rights reserved**Description:**C1**Description:**2003001603

- Baca, Martin, Lin, Yuqing, Miller, Mirka, Youssef, Maged

**Authors:**Baca, Martin , Lin, Yuqing , Miller, Mirka , Youssef, Maged**Date:**2007**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 307, no. 11-12 (May 2007), p. 1232-1244**Full Text:**false**Reviewed:****Description:**For a graph G = (V, E), a bijection g from V(G) boolean OR E(G) into {1, 2,..., vertical bar V(G)vertical bar + vertical bar E(G)vertical bar} is called (a, d)-edge-antimagic total labeling of G if the edge-weights w(xy) = g(x) + g(y) + g(xy), xy E E(G), form an arithmetic progression starting from a and having common difference d. An (a, d)-edge-antimagic total labeling is called super (a, d)-edge-antimagic total if g(V(G)) = {1, 2,..., vertical bar V(G)vertical bar}. We study super (a, d)-edge-antimagic properties of certain classes of graphs, including friendship graphs, wheels, fans, complete graphs and complete bipartite graphs. (c) 2006 Elsevier B.V. All rights reserved.**Description:**2003004910

On irregular total labellings

- Baca, Martin, Jendrol, Stanislav, Miller, Mirka, Ryan, Joe

**Authors:**Baca, Martin , Jendrol, Stanislav , Miller, Mirka , Ryan, Joe**Date:**2007**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 307, no. 11-12 (May 2007), p. 1378-1388**Full Text:****Reviewed:****Description:**Two new graph characteristics, the total vertex irregularity strength and the total edge irregularity strength, are introduced. Estimations on these parameters are obtained. For some families of graphs the precise values of these parameters are proved. (c) 2006 Elsevier B.V. All rights reserved.**Description:**C1**Description:**2003004909

**Authors:**Baca, Martin , Jendrol, Stanislav , Miller, Mirka , Ryan, Joe**Date:**2007**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 307, no. 11-12 (May 2007), p. 1378-1388**Full Text:****Reviewed:****Description:**Two new graph characteristics, the total vertex irregularity strength and the total edge irregularity strength, are introduced. Estimations on these parameters are obtained. For some families of graphs the precise values of these parameters are proved. (c) 2006 Elsevier B.V. All rights reserved.**Description:**C1**Description:**2003004909

- Balbuena, Camino, Barker, Ewan, Lin, Yuqing, Miller, Mirka, Sugeng, Kiki Ariyanti

**Authors:**Balbuena, Camino , Barker, Ewan , Lin, Yuqing , Miller, Mirka , Sugeng, Kiki Ariyanti**Date:**2006**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 306, no. 16 (2006), p. 1817-1829**Full Text:**false**Reviewed:****Description:**Let G be a graph of order n and size e. A vertex-magic total labeling is an assignment of the integers 1, 2, ..., n + e to the vertices and the edges of G, so that at each vertex, the vertex label and the labels on the edges incident at that vertex, add to a fixed constant, called the magic number of G. Such a labeling is a-vertex consecutive magic if the set of the labels of the vertices is { a + 1, a + 2, ..., a + n }, and is b-edge consecutive magic if the set of labels of the edges is { b + 1, b + 2, ..., b + e }. In this paper we prove that if an a-vertex consecutive magic graph has isolated vertices then the order and the size satisfy (n - 1)**Description:**C1**Description:**2003001604

Moore bound for mixed networks

- Nguyen, Minh Hoang, Miller, Mirka

**Authors:**Nguyen, Minh Hoang , Miller, Mirka**Date:**2008**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 308, no. 23 (Dec 2008), p. 5499-5503**Full Text:**false**Reviewed:****Description:**Mixed graphs contain both undirected as well as directed links between vertices and therefore are an interesting model for interconnection communication networks. In this paper, we establish the Moore bound for mixed graphs, which generalizes both the directed and the undirected Moore bound. Crown Copyright (C) 2007 Published by Elsevier B.V. All rights reserved.

Improved lower bound for the vertex connectivity of (delta;g)-cages

- Lin, Yuqing, Miller, Mirka, Balbuena, Camino

**Authors:**Lin, Yuqing , Miller, Mirka , Balbuena, Camino**Date:**2005**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 299, no. 1-3 (Aug 2005), p. 162-171**Full Text:**false**Reviewed:****Description:**A (delta, g)-cage is a delta-regular graph with girth g and with the least possible number of vertices. We prove that all (delta, g)-cages are r-connected with r >= root(delta + 1) for g >= 7 odd. This result supports the conjecture of Fu, Huang and Rodger that all (delta; g)-cages are delta-connected. (c) 2005 Elsevier B.V. All rights reserved.**Description:**C1**Description:**2003001397

On the connectivity of (k, g)-cages of even girth

- Lin, Yuqing, Balbuena, Camino, Marcote, Xavier, Miller, Mirka

**Authors:**Lin, Yuqing , Balbuena, Camino , Marcote, Xavier , Miller, Mirka**Date:**2008**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 308, no. 15 (2008), p. 3249-3256**Full Text:**false**Reviewed:****Description:**A (k,g)-cage is a k-regular graph with girth g and with the least possible number of vertices. In this paper we give a brief overview of the current results on the connectivity of (k,g)-cages and we improve the current known best lower bound on the vertex connectivity of (k,g)-cages for g even. © 2007 Elsevier B.V. All rights reserved.**Description:**C1

Graphs of order two less than the Moore bound

- Miller, Mirka, Simanjuntak, Rinovia

**Authors:**Miller, Mirka , Simanjuntak, Rinovia**Date:**2008**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 308, no. 13 (2008), p. 2810-2821**Full Text:**false**Reviewed:****Description:**The Moore bound for a directed graph of maximum out-degree d and diameter k is Md,k=1+d+d2++dk. It is known that digraphs of order Md,k (Moore digraphs) do not exist for d>1 and k>1. Similarly, the Moore bound for an undirected graph of maximum degree d and diameter k is . Undirected Moore graphs only exist in a small number of cases. Mixed (or partially directed) Moore graphs generalize both undirected and directed Moore graphs. In this paper, we shall show that all known mixed Moore graphs of diameter k=2 are unique and that mixed Moore graphs of diameter k3 do not exist.**Description:**C1

- Nguyen, Minh Hoang, Miller, Mirka, Gimbert, Joan

**Authors:**Nguyen, Minh Hoang , Miller, Mirka , Gimbert, Joan**Date:**2007**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 307, no. 7-8 (2007), p. 964-970**Full Text:**false**Reviewed:****Description:**The Moore bound for a directed graph of maximum out-degree d and diameter k is M**Description:**C1**Description:**2003005024

Structural properties of graphs of diameter 2 with maximal repeats

- Nguyen, Minh Hoang, Miller, Mirka

**Authors:**Nguyen, Minh Hoang , Miller, Mirka**Date:**2008**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 308, no. 11 (Jun 2008), p. 2337-2341**Full Text:**false**Reviewed:****Description:**It was shown using eigenvalue analysis by Erdos et al. that with the exception of C-4, there are no graphs of diameter 2, of maximum degree d and of order d(2), that is, one less than the Moore bound. These graphs belong to a class of regular graphs of diameter 2, and having certain interesting structural properties, which will be proved in this paper. (c) 2007 Elsevier B.V. All rights reserved.**Description:**C1

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?