Your selections:

2Kruger, Alexander
1Chen, Yi
1Gao, David
1Gfrerer, Helmut
1Gómez, José
1Li, Jueyou
1Long, Qiang
1Luke, Russell
1López, Marco
1Miller, Mirka
1Ngai, Huynh Van
1Outrata, Jiri
1Pineda-Villavicencio, Guillermo
1Pérez-Rosés, Hebert
1Thao, Nguyen
1Thera, Michel
1Théra, Michel
1Wu, Changzhi
1Wu, Zhiyou

Show More

Show Less

3Metric regularity
2Error bound
1Alternating projections
1Aubin property
1Bipartite Moore graphs
1CHIP
1Canonical duality theory
1Clarke regularity
1Compounding of graphs
1Convex optimization
1Degree/diameter problem
1Directional limiting coderivative
1Directional metric regularity
1Distance functions
1Distributed algorithm
1Double-well function
1Douglas-Rachford

Show More

Show Less

Perturbation of error bounds

- Kruger, Alexander, López, Marco, Théra, Michel

**Authors:**Kruger, Alexander , López, Marco , Théra, Michel**Date:**2018**Type:**Text , Journal article**Relation:**Mathematical Programming Vol. 168, no. 1-2 (2018), p. 533-554**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**Our aim in the current article is to extend the developments in Kruger et al. (SIAM J Optim 20(6):3280–3296, 2010. doi:10.1137/100782206) and, more precisely, to characterize, in the Banach space setting, the stability of the local and global error bound property of inequalities determined by lower semicontinuous functions under data perturbations. We propose new concepts of (arbitrary, convex and linear) perturbations of the given function defining the system under consideration, which turn out to be a useful tool in our analysis. The characterizations of error bounds for families of perturbations can be interpreted as estimates of the ‘radius of error bounds’. The definitions and characterizations are illustrated by examples. © 2017, Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society.

**Authors:**Kruger, Alexander , López, Marco , Théra, Michel**Date:**2018**Type:**Text , Journal article**Relation:**Mathematical Programming Vol. 168, no. 1-2 (2018), p. 533-554**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**Our aim in the current article is to extend the developments in Kruger et al. (SIAM J Optim 20(6):3280–3296, 2010. doi:10.1137/100782206) and, more precisely, to characterize, in the Banach space setting, the stability of the local and global error bound property of inequalities determined by lower semicontinuous functions under data perturbations. We propose new concepts of (arbitrary, convex and linear) perturbations of the given function defining the system under consideration, which turn out to be a useful tool in our analysis. The characterizations of error bounds for families of perturbations can be interpreted as estimates of the ‘radius of error bounds’. The definitions and characterizations are illustrated by examples. © 2017, Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society.

Set regularities and feasibility problems

- Kruger, Alexander, Luke, Russell, Thao, Nguyen

**Authors:**Kruger, Alexander , Luke, Russell , Thao, Nguyen**Date:**2018**Type:**Text , Journal article**Relation:**Mathematical Programming Vol. 168, no. 1-2 (2018), p. 279-311**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between seemingly different ideas and point to possible necessary conditions for local linear convergence of fundamental algorithms

**Authors:**Kruger, Alexander , Luke, Russell , Thao, Nguyen**Date:**2018**Type:**Text , Journal article**Relation:**Mathematical Programming Vol. 168, no. 1-2 (2018), p. 279-311**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between seemingly different ideas and point to possible necessary conditions for local linear convergence of fundamental algorithms

On the Aubin property of a class of parameterized variational systems

- Gfrerer, Helmut, Outrata, Jiri

**Authors:**Gfrerer, Helmut , Outrata, Jiri**Date:**2017**Type:**Text , Journal article**Relation:**Mathematical Methods of Operations Research Vol. 86, no. 3 (2017), p. 443-467**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**The paper deals with a new sharp condition ensuring the Aubin property of solution maps to a class of parameterized variational systems. This class encompasses various types of parameterized variational inequalities/generalized equations with fairly general constraint sets. The new condition requires computation of directional limiting coderivatives of the normal-cone mapping for the so-called critical directions. The respective formulas have the form of a second-order chain rule and extend the available calculus of directional limiting objects. The suggested procedure is illustrated by means of examples. © 2017, Springer-Verlag GmbH Germany.

**Authors:**Gfrerer, Helmut , Outrata, Jiri**Date:**2017**Type:**Text , Journal article**Relation:**Mathematical Methods of Operations Research Vol. 86, no. 3 (2017), p. 443-467**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**The paper deals with a new sharp condition ensuring the Aubin property of solution maps to a class of parameterized variational systems. This class encompasses various types of parameterized variational inequalities/generalized equations with fairly general constraint sets. The new condition requires computation of directional limiting coderivatives of the normal-cone mapping for the so-called critical directions. The respective formulas have the form of a second-order chain rule and extend the available calculus of directional limiting objects. The suggested procedure is illustrated by means of examples. © 2017, Springer-Verlag GmbH Germany.

Global solutions to nonconvex optimization of 4th-order polynomial and log-sum-exp functions

**Authors:**Chen, Yi , Gao, David**Date:**2016**Type:**Text , Journal article**Relation:**Journal of Global Optimization Vol. 64, no. 3 (2016), p. 417-431**Full Text:****Reviewed:****Description:**This paper presents a canonical dual approach for solving a nonconvex global optimization problem governed by a sum of 4th-order polynomial and a log-sum-exp function. Such a problem arises extensively in engineering and sciences. Based on the canonical dualityâ€“triality theory, this nonconvex problem is transformed to an equivalent dual problem, which can be solved easily under certain conditions. We proved that both global minimizer and the biggest local extrema of the primal problem can be obtained analytically from the canonical dual solutions. As two special cases, a quartic polynomial minimization and a minimax problem are discussed. Existence conditions are derived, which can be used to classify easy and relative hard instances. Applications are illustrated by several nonconvex and nonsmooth examples. © 2014, Springer Science+Business Media New York.

**Authors:**Chen, Yi , Gao, David**Date:**2016**Type:**Text , Journal article**Relation:**Journal of Global Optimization Vol. 64, no. 3 (2016), p. 417-431**Full Text:****Reviewed:****Description:**This paper presents a canonical dual approach for solving a nonconvex global optimization problem governed by a sum of 4th-order polynomial and a log-sum-exp function. Such a problem arises extensively in engineering and sciences. Based on the canonical dualityâ€“triality theory, this nonconvex problem is transformed to an equivalent dual problem, which can be solved easily under certain conditions. We proved that both global minimizer and the biggest local extrema of the primal problem can be obtained analytically from the canonical dual solutions. As two special cases, a quartic polynomial minimization and a minimax problem are discussed. Existence conditions are derived, which can be used to classify easy and relative hard instances. Applications are illustrated by several nonconvex and nonsmooth examples. © 2014, Springer Science+Business Media New York.

Directional metric regularity of multifunctions

- Ngai, Huynh Van, Thera, Michel

**Authors:**Ngai, Huynh Van , Thera, Michel**Date:**2015**Type:**Text , Journal article**Relation:**Mathematics of Operations Research Vol. 40, no. 4 (2015), p. 969-991**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**In this paper, we study relative metric regularity of set-valued mappings with emphasis on directional metric regularity. We establish characterizations of relative metric regularity without assuming the completeness of the image spaces, by using the relative lower semicontinuous envelopes of the distance functions to set-valued mappings. We then apply these characterizations to establish a coderivative type criterion for directional metric regularity as well as for the robustness of metric regularity.**Description:**In this paper, we study relative metric regularity of set-valued mappings with emphasis on directional metric regularity. We establish characterizations of relative metric regularity without assuming the completeness of the image spaces, by using the relative lower semicontinuous envelopes of the distance functions to set-valued mappings. We then apply these characterizations to establish a coderivative type criterion for directional metric regularity as well as for the robustness of metric regularity. © 2015 INFORMS.

**Authors:**Ngai, Huynh Van , Thera, Michel**Date:**2015**Type:**Text , Journal article**Relation:**Mathematics of Operations Research Vol. 40, no. 4 (2015), p. 969-991**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**In this paper, we study relative metric regularity of set-valued mappings with emphasis on directional metric regularity. We establish characterizations of relative metric regularity without assuming the completeness of the image spaces, by using the relative lower semicontinuous envelopes of the distance functions to set-valued mappings. We then apply these characterizations to establish a coderivative type criterion for directional metric regularity as well as for the robustness of metric regularity.**Description:**In this paper, we study relative metric regularity of set-valued mappings with emphasis on directional metric regularity. We establish characterizations of relative metric regularity without assuming the completeness of the image spaces, by using the relative lower semicontinuous envelopes of the distance functions to set-valued mappings. We then apply these characterizations to establish a coderivative type criterion for directional metric regularity as well as for the robustness of metric regularity. © 2015 INFORMS.

Gradient-free method for nonsmooth distributed optimization

- Li, Jueyou, Wu, Changzhi, Wu, Zhiyou, Long, Qiang

**Authors:**Li, Jueyou , Wu, Changzhi , Wu, Zhiyou , Long, Qiang**Date:**2014**Type:**Text , Journal article**Relation:**Journal of Global Optimization Vol. , no. (March 2014), p.**Full Text:****Reviewed:****Description:**In this paper, we consider a distributed nonsmooth optimization problem over a computational multi-agent network. We first extend the (centralized) Nesterov’s random gradient-free algorithm and Gaussian smoothing technique to the distributed case. Then, the convergence of the algorithm is proved. Furthermore, an explicit convergence rate is given in terms of the network size and topology. Our proposed method is free of gradient, which may be preferred by practical engineers. Since only the cost function value is required, our method may suffer a factor up to d (the dimension of the agent) in convergence rate over that of the distributed subgradient-based methods in theory. However, our numerical simulations show that for some nonsmooth problems, our method can even achieve better performance than that of subgradient-based methods, which may be caused by the slow convergence in the presence of subgradient.

**Authors:**Li, Jueyou , Wu, Changzhi , Wu, Zhiyou , Long, Qiang**Date:**2014**Type:**Text , Journal article**Relation:**Journal of Global Optimization Vol. , no. (March 2014), p.**Full Text:****Reviewed:****Description:**In this paper, we consider a distributed nonsmooth optimization problem over a computational multi-agent network. We first extend the (centralized) Nesterov’s random gradient-free algorithm and Gaussian smoothing technique to the distributed case. Then, the convergence of the algorithm is proved. Furthermore, an explicit convergence rate is given in terms of the network size and topology. Our proposed method is free of gradient, which may be preferred by practical engineers. Since only the cost function value is required, our method may suffer a factor up to d (the dimension of the agent) in convergence rate over that of the distributed subgradient-based methods in theory. However, our numerical simulations show that for some nonsmooth problems, our method can even achieve better performance than that of subgradient-based methods, which may be caused by the slow convergence in the presence of subgradient.

New largest known graphs of diameter 6

- Pineda-Villavicencio, Guillermo, Gómez, José, Miller, Mirka, Pérez-Rosés, Hebert

**Authors:**Pineda-Villavicencio, Guillermo , Gómez, José , Miller, Mirka , Pérez-Rosés, Hebert**Date:**2009**Type:**Text , Journal article**Relation:**Networks Vol. 53, no. 4 (2009), p. 315-328**Full Text:****Reviewed:****Description:**In the pursuit of obtaining largest graphs of given maximum degree**Description:**2003007890

**Authors:**Pineda-Villavicencio, Guillermo , Gómez, José , Miller, Mirka , Pérez-Rosés, Hebert**Date:**2009**Type:**Text , Journal article**Relation:**Networks Vol. 53, no. 4 (2009), p. 315-328**Full Text:****Reviewed:****Description:**In the pursuit of obtaining largest graphs of given maximum degree**Description:**2003007890

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?