Your selections:

16Kruger, Alexander
7Mammadov, Musa
6Bagirov, Adil
5Gao, David
5López, Marco
5Outrata, Jiri
4Thao, Nguyen
4Ugon, Julien
3Lopez, Marco
3Mordukhovich, Boris
3Ouveysi, Iradj
3Roshchina, Vera
3Rubinov, Alex
3Taheri, Sona
3Théra, Michel
3Wu, Zhiyou
3Zhang, Jiapu
2Cánovas, Maria
2Dinh, Nguyen
2Dzalilov, Zari

Show More

Show Less

460102 Applied Mathematics
90906 Electrical and Electronic Engineering
80802 Computation Theory and Mathematics
8Metric regularity
7Global optimization
7Subdifferential
6Nonsmooth optimization
6Normal cone
4Asplund space
4Calmness
4Canonical duality theory
4Computer science
4Software engineering
4Variational analysis
3Derivative-free optimization
3Extremality
3Linear programming
3Metric subregularity
3Nonconvex optimization

Show More

Show Less

Format Type

A counterexample to De Pierro's conjecture on the convergence of under-relaxed cyclic projections

- Cominetti, Roberto, Roshchina, Vera, Williamson, Andrew

**Authors:**Cominetti, Roberto , Roshchina, Vera , Williamson, Andrew**Date:**2019**Type:**Text , Journal article**Relation:**Optimization Vol. 68, no. 1 (2019), p. 3-12**Full Text:****Reviewed:****Description:**The convex feasibility problem consists in finding a point in the intersection of a finite family of closed convex sets. When the intersection is empty, a best compromise is to search for a point that minimizes the sum of the squared distances to the sets. In 2001, de Pierro conjectured that the limit cycles generated by the ε-under-relaxed cyclic projection method converge when ε ↓ 0 towards a least squares solution. While the conjecture has been confirmed under fairly general conditions, we show that it is false in general by constructing a system of three compact convex sets in R3 for which the ε-under-relaxed cycles do not converge. © 2018 Informa UK Limited, trading as Taylor & Francis Group.

**Authors:**Cominetti, Roberto , Roshchina, Vera , Williamson, Andrew**Date:**2019**Type:**Text , Journal article**Relation:**Optimization Vol. 68, no. 1 (2019), p. 3-12**Full Text:****Reviewed:****Description:**The convex feasibility problem consists in finding a point in the intersection of a finite family of closed convex sets. When the intersection is empty, a best compromise is to search for a point that minimizes the sum of the squared distances to the sets. In 2001, de Pierro conjectured that the limit cycles generated by the ε-under-relaxed cyclic projection method converge when ε ↓ 0 towards a least squares solution. While the conjecture has been confirmed under fairly general conditions, we show that it is false in general by constructing a system of three compact convex sets in R3 for which the ε-under-relaxed cycles do not converge. © 2018 Informa UK Limited, trading as Taylor & Francis Group.

Characterizations of nonsmooth robustly quasiconvex functions

- Bui, Hoa, Khanh, Pham, Tran, Thi

**Authors:**Bui, Hoa , Khanh, Pham , Tran, Thi**Date:**2019**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 180, no. 3 (2019), p. 775-786**Full Text:****Reviewed:****Description:**Two criteria for the robust quasiconvexity of lower semicontinuous functions are established in terms of Fréchet subdifferentials in Asplund spaces. The first criterion extends to such spaces a result established by Barron et al. (Discrete Contin Dyn Syst Ser B 17:1693–1706, 2012). The second criterion is totally new even if it is applied to lower semicontinuous functions on finite-dimensional spaces. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

**Authors:**Bui, Hoa , Khanh, Pham , Tran, Thi**Date:**2019**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 180, no. 3 (2019), p. 775-786**Full Text:****Reviewed:****Description:**Two criteria for the robust quasiconvexity of lower semicontinuous functions are established in terms of Fréchet subdifferentials in Asplund spaces. The first criterion extends to such spaces a result established by Barron et al. (Discrete Contin Dyn Syst Ser B 17:1693–1706, 2012). The second criterion is totally new even if it is applied to lower semicontinuous functions on finite-dimensional spaces. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

On the reconstruction of polytopes

- Doolittle, Joseph, Nevo, Eran, Pineda-Villavicencio, Guillermo, Ugon, Julien, Yost, David

**Authors:**Doolittle, Joseph , Nevo, Eran , Pineda-Villavicencio, Guillermo , Ugon, Julien , Yost, David**Date:**2019**Type:**Text , Journal article**Relation:**Discrete and Computational Geometry Vol. 61, no. 2 (2019), p. 285-302**Full Text:****Reviewed:****Description:**Blind and Mani, and later Kalai, showed that the face lattice of a simple polytope is determined by its graph, namely its 1-skeleton. Call a vertex of a d-polytope nonsimple if the number of edges incident to it is more than d. We show that (1) the face lattice of any d-polytope with at most two nonsimple vertices is determined by its 1-skeleton; (2) the face lattice of any d-polytope with at most d- 2 nonsimple vertices is determined by its 2-skeleton; and (3) for any d> 3 there are two d-polytopes with d- 1 nonsimple vertices, isomorphic (d- 3) -skeleta and nonisomorphic face lattices. In particular, the result (1) is best possible for 4-polytopes. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

**Authors:**Doolittle, Joseph , Nevo, Eran , Pineda-Villavicencio, Guillermo , Ugon, Julien , Yost, David**Date:**2019**Type:**Text , Journal article**Relation:**Discrete and Computational Geometry Vol. 61, no. 2 (2019), p. 285-302**Full Text:****Reviewed:****Description:**Blind and Mani, and later Kalai, showed that the face lattice of a simple polytope is determined by its graph, namely its 1-skeleton. Call a vertex of a d-polytope nonsimple if the number of edges incident to it is more than d. We show that (1) the face lattice of any d-polytope with at most two nonsimple vertices is determined by its 1-skeleton; (2) the face lattice of any d-polytope with at most d- 2 nonsimple vertices is determined by its 2-skeleton; and (3) for any d> 3 there are two d-polytopes with d- 1 nonsimple vertices, isomorphic (d- 3) -skeleta and nonisomorphic face lattices. In particular, the result (1) is best possible for 4-polytopes. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

The Demyanov–Ryabova conjecture is false

**Authors:**Roshchina, Vera**Date:**2019**Type:**Text , Journal article**Relation:**Optimization Letters Vol. 13, no. 1 (2019), p. 227-234**Full Text:****Reviewed:****Description:**It was conjectured by Demyanov and Ryabova (Discrete Contin Dyn Syst 31(4):1273–1292, 2011) that the minimal cycle in the sequence obtained via repeated application of the Demyanov converter to a finite family of polytopes is at most two. We construct a counterexample for which the minimal cycle has length 4.

**Authors:**Roshchina, Vera**Date:**2019**Type:**Text , Journal article**Relation:**Optimization Letters Vol. 13, no. 1 (2019), p. 227-234**Full Text:****Reviewed:****Description:**It was conjectured by Demyanov and Ryabova (Discrete Contin Dyn Syst 31(4):1273–1292, 2011) that the minimal cycle in the sequence obtained via repeated application of the Demyanov converter to a finite family of polytopes is at most two. We construct a counterexample for which the minimal cycle has length 4.

Double bundle method for finding clarke stationary points in nonsmooth dc programming

- Joki, Kaisa, Bagirov, Adil, Karmitsa, Napsu, Makela, Marko, Taheri, Sona

**Authors:**Joki, Kaisa , Bagirov, Adil , Karmitsa, Napsu , Makela, Marko , Taheri, Sona**Date:**2018**Type:**Text , Journal article**Relation:**SIAM Journal on Optimization Vol. 28, no. 2 (2018), p. 1892-1919**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:****Reviewed:****Description:**The aim of this paper is to introduce a new proximal double bundle method for unconstrained nonsmooth optimization, where the objective function is presented as a difference of two convex (DC) functions. The novelty in our method is a new escape procedure which enables us to guarantee approximate Clarke stationarity for solutions by utilizing the DC components of the objective function. This optimality condition is stronger than the criticality condition typically used in DC programming. Moreover, if a candidate solution is not approximate Clarke stationary, then the escape procedure returns a descent direction. With this escape procedure, we can avoid some shortcomings encountered when criticality is used. The finite termination of the double bundle method to an approximate Clarke stationary point is proved by assuming that the subdifferentials of DC components are polytopes. Finally, some encouraging numerical results are presented.

**Authors:**Joki, Kaisa , Bagirov, Adil , Karmitsa, Napsu , Makela, Marko , Taheri, Sona**Date:**2018**Type:**Text , Journal article**Relation:**SIAM Journal on Optimization Vol. 28, no. 2 (2018), p. 1892-1919**Relation:**http://purl.org/au-research/grants/arc/DP140103213**Full Text:****Reviewed:****Description:**The aim of this paper is to introduce a new proximal double bundle method for unconstrained nonsmooth optimization, where the objective function is presented as a difference of two convex (DC) functions. The novelty in our method is a new escape procedure which enables us to guarantee approximate Clarke stationarity for solutions by utilizing the DC components of the objective function. This optimality condition is stronger than the criticality condition typically used in DC programming. Moreover, if a candidate solution is not approximate Clarke stationary, then the escape procedure returns a descent direction. With this escape procedure, we can avoid some shortcomings encountered when criticality is used. The finite termination of the double bundle method to an approximate Clarke stationary point is proved by assuming that the subdifferentials of DC components are polytopes. Finally, some encouraging numerical results are presented.

Perturbation of error bounds

- Kruger, Alexander, López, Marco, Théra, Michel

**Authors:**Kruger, Alexander , López, Marco , Théra, Michel**Date:**2018**Type:**Text , Journal article**Relation:**Mathematical Programming Vol. 168, no. 1-2 (2018), p. 533-554**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**Our aim in the current article is to extend the developments in Kruger et al. (SIAM J Optim 20(6):3280–3296, 2010. doi:10.1137/100782206) and, more precisely, to characterize, in the Banach space setting, the stability of the local and global error bound property of inequalities determined by lower semicontinuous functions under data perturbations. We propose new concepts of (arbitrary, convex and linear) perturbations of the given function defining the system under consideration, which turn out to be a useful tool in our analysis. The characterizations of error bounds for families of perturbations can be interpreted as estimates of the ‘radius of error bounds’. The definitions and characterizations are illustrated by examples. © 2017, Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society.

**Authors:**Kruger, Alexander , López, Marco , Théra, Michel**Date:**2018**Type:**Text , Journal article**Relation:**Mathematical Programming Vol. 168, no. 1-2 (2018), p. 533-554**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**Our aim in the current article is to extend the developments in Kruger et al. (SIAM J Optim 20(6):3280–3296, 2010. doi:10.1137/100782206) and, more precisely, to characterize, in the Banach space setting, the stability of the local and global error bound property of inequalities determined by lower semicontinuous functions under data perturbations. We propose new concepts of (arbitrary, convex and linear) perturbations of the given function defining the system under consideration, which turn out to be a useful tool in our analysis. The characterizations of error bounds for families of perturbations can be interpreted as estimates of the ‘radius of error bounds’. The definitions and characterizations are illustrated by examples. © 2017, Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society.

Set regularities and feasibility problems

- Kruger, Alexander, Luke, Russell, Thao, Nguyen

**Authors:**Kruger, Alexander , Luke, Russell , Thao, Nguyen**Date:**2018**Type:**Text , Journal article**Relation:**Mathematical Programming Vol. 168, no. 1-2 (2018), p. 279-311**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between seemingly different ideas and point to possible necessary conditions for local linear convergence of fundamental algorithms

**Authors:**Kruger, Alexander , Luke, Russell , Thao, Nguyen**Date:**2018**Type:**Text , Journal article**Relation:**Mathematical Programming Vol. 168, no. 1-2 (2018), p. 279-311**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**We synthesize and unify notions of regularity, both of individual sets and of collections of sets, as they appear in the convergence theory of projection methods for consistent feasibility problems. Several new characterizations of regularities are presented which shed light on the relations between seemingly different ideas and point to possible necessary conditions for local linear convergence of fundamental algorithms

Characterization theorem for best polynomial spline approximation with free knots, variable degree and fixed tails

- Crouzeix, Jean-Pierre, Sukhorukova, Nadezda, Ugon, Julien

**Authors:**Crouzeix, Jean-Pierre , Sukhorukova, Nadezda , Ugon, Julien**Date:**2017**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 172, no. 3 (2017), p. 950-964**Full Text:****Reviewed:****Description:**In this paper, we derive a necessary condition for a best approximation by piecewise polynomial functions of varying degree from one interval to another. Based on these results, we obtain a characterization theorem for the polynomial splines with fixed tails, that is the value of the spline is fixed in one or more knots (external or internal). We apply nonsmooth nonconvex analysis to obtain this result, which is also a necessary and sufficient condition for inf-stationarity in the sense of Demyanov-Rubinov. This paper is an extension of a paper where similar conditions were obtained for free tails splines. The main results of this paper are essential for the development of a Remez-type algorithm for free knot spline approximation.

**Authors:**Crouzeix, Jean-Pierre , Sukhorukova, Nadezda , Ugon, Julien**Date:**2017**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 172, no. 3 (2017), p. 950-964**Full Text:****Reviewed:****Description:**In this paper, we derive a necessary condition for a best approximation by piecewise polynomial functions of varying degree from one interval to another. Based on these results, we obtain a characterization theorem for the polynomial splines with fixed tails, that is the value of the spline is fixed in one or more knots (external or internal). We apply nonsmooth nonconvex analysis to obtain this result, which is also a necessary and sufficient condition for inf-stationarity in the sense of Demyanov-Rubinov. This paper is an extension of a paper where similar conditions were obtained for free tails splines. The main results of this paper are essential for the development of a Remez-type algorithm for free knot spline approximation.

Farkas-type results for vector-valued functions with applications

- Dinh, Nguyen, Goberna, Miguel, Lopez, Marco, Mo, T. H.

**Authors:**Dinh, Nguyen , Goberna, Miguel , Lopez, Marco , Mo, T. H.**Date:**2017**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 173, no. 2 (2017), p. 357-390**Full Text:****Reviewed:****Description:**The main purpose of this paper consists of providing characterizations of the inclusion of the solution set of a given conic system posed in a real locally convex topological space into a variety of subsets of the same space defined by means of vector-valued functions. These Farkas-type results are used to derive characterizations of the weak solutions of vector optimization problems (including multiobjective and scalar ones), vector variational inequalities, and vector equilibrium problems.

**Authors:**Dinh, Nguyen , Goberna, Miguel , Lopez, Marco , Mo, T. H.**Date:**2017**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 173, no. 2 (2017), p. 357-390**Full Text:****Reviewed:****Description:**The main purpose of this paper consists of providing characterizations of the inclusion of the solution set of a given conic system posed in a real locally convex topological space into a variety of subsets of the same space defined by means of vector-valued functions. These Farkas-type results are used to derive characterizations of the weak solutions of vector optimization problems (including multiobjective and scalar ones), vector variational inequalities, and vector equilibrium problems.

On the Aubin property of a class of parameterized variational systems

- Gfrerer, Helmut, Outrata, Jiri

**Authors:**Gfrerer, Helmut , Outrata, Jiri**Date:**2017**Type:**Text , Journal article**Relation:**Mathematical Methods of Operations Research Vol. 86, no. 3 (2017), p. 443-467**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**The paper deals with a new sharp condition ensuring the Aubin property of solution maps to a class of parameterized variational systems. This class encompasses various types of parameterized variational inequalities/generalized equations with fairly general constraint sets. The new condition requires computation of directional limiting coderivatives of the normal-cone mapping for the so-called critical directions. The respective formulas have the form of a second-order chain rule and extend the available calculus of directional limiting objects. The suggested procedure is illustrated by means of examples. © 2017, Springer-Verlag GmbH Germany.

**Authors:**Gfrerer, Helmut , Outrata, Jiri**Date:**2017**Type:**Text , Journal article**Relation:**Mathematical Methods of Operations Research Vol. 86, no. 3 (2017), p. 443-467**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**The paper deals with a new sharp condition ensuring the Aubin property of solution maps to a class of parameterized variational systems. This class encompasses various types of parameterized variational inequalities/generalized equations with fairly general constraint sets. The new condition requires computation of directional limiting coderivatives of the normal-cone mapping for the so-called critical directions. The respective formulas have the form of a second-order chain rule and extend the available calculus of directional limiting objects. The suggested procedure is illustrated by means of examples. © 2017, Springer-Verlag GmbH Germany.

A generalization of a theorem of Arrow, Barankin and Blackwell to a nonconvex case

- Kasimbeyli, Nergiz, Kasimbeyli, Refail, Mammadov, Musa

**Authors:**Kasimbeyli, Nergiz , Kasimbeyli, Refail , Mammadov, Musa**Date:**2016**Type:**Text , Journal article**Relation:**Optimization Vol. 65, no. 5 (May 2016), p. 937-945**Full Text:****Reviewed:****Description:**The paper presents a generalization of a known density theorem of Arrow, Barankin, and Blackwell for properly efficient points defined as support points of sets with respect to monotonically increasing sublinear functions. This result is shown to hold for nonconvex sets of a partially ordered reflexive Banach space.

**Authors:**Kasimbeyli, Nergiz , Kasimbeyli, Refail , Mammadov, Musa**Date:**2016**Type:**Text , Journal article**Relation:**Optimization Vol. 65, no. 5 (May 2016), p. 937-945**Full Text:****Reviewed:****Description:**The paper presents a generalization of a known density theorem of Arrow, Barankin, and Blackwell for properly efficient points defined as support points of sets with respect to monotonically increasing sublinear functions. This result is shown to hold for nonconvex sets of a partially ordered reflexive Banach space.

Canonical duality for solving general nonconvex constrained problems

- Latorre, Vittorio, Gao, David

**Authors:**Latorre, Vittorio , Gao, David**Date:**2016**Type:**Text , Journal article**Relation:**Optimization Letters Vol. 10, no. 8 (2016), p. 1763-1779**Full Text:****Reviewed:****Description:**This paper presents a canonical duality theory for solving a general nonconvex constrained optimization problem within a unified framework to cover Lagrange multiplier method and KKT theory. It is proved that if both target function and constraints possess certain patterns necessary for modeling real systems, a perfect dual problem (without duality gap) can be obtained in a unified form with global optimality conditions provided.While the popular augmented Lagrangian method may produce more difficult nonconvex problems due to the nonlinearity of constraints. Some fundamental concepts such as the objectivity and Lagrangian in nonlinear programming are addressed.

**Authors:**Latorre, Vittorio , Gao, David**Date:**2016**Type:**Text , Journal article**Relation:**Optimization Letters Vol. 10, no. 8 (2016), p. 1763-1779**Full Text:****Reviewed:****Description:**This paper presents a canonical duality theory for solving a general nonconvex constrained optimization problem within a unified framework to cover Lagrange multiplier method and KKT theory. It is proved that if both target function and constraints possess certain patterns necessary for modeling real systems, a perfect dual problem (without duality gap) can be obtained in a unified form with global optimality conditions provided.While the popular augmented Lagrangian method may produce more difficult nonconvex problems due to the nonlinearity of constraints. Some fundamental concepts such as the objectivity and Lagrangian in nonlinear programming are addressed.

Directional Holder metric regularity

- Ngai, Huynh Van, Tron, Nguyen Huu, Thera, Michel

**Authors:**Ngai, Huynh Van , Tron, Nguyen Huu , Thera, Michel**Date:**2016**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 171, no. 3 (2016), p. 785-819**Full Text:****Reviewed:****Description:**This paper sheds new light on regularity of multifunctions through various characterizations of directional Holder/Lipschitz metric regularity, which are based on the concepts of slope and coderivative. By using these characterizations, we show that directional Holder/Lipschitz metric regularity is stable, when the multifunction under consideration is perturbed suitably. Applications of directional Holder/Lipschitz metric regularity to investigate the stability and the sensitivity analysis of parameterized optimization problems are also discussed.

**Authors:**Ngai, Huynh Van , Tron, Nguyen Huu , Thera, Michel**Date:**2016**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 171, no. 3 (2016), p. 785-819**Full Text:****Reviewed:****Description:**This paper sheds new light on regularity of multifunctions through various characterizations of directional Holder/Lipschitz metric regularity, which are based on the concepts of slope and coderivative. By using these characterizations, we show that directional Holder/Lipschitz metric regularity is stable, when the multifunction under consideration is perturbed suitably. Applications of directional Holder/Lipschitz metric regularity to investigate the stability and the sensitivity analysis of parameterized optimization problems are also discussed.

Global optimal trajectory in Chaos and NP-Hardness

- Latorre, Vittorio, Gao, David

**Authors:**Latorre, Vittorio , Gao, David**Date:**2016**Type:**Text , Journal article**Relation:**International Journal of Bifurcation and Chaos Vol. 26, no. 8 (2016), p. 1-14**Full Text:****Reviewed:****Description:**This paper presents an unconventional theory and method for solving general nonlinear dynamical systems. Instead of the direct iterative methods, the discretized nonlinear system is first formulated as a global optimization problem via the least squares method. A newly developed canonical duality theory shows that this nonconvex minimization problem can be solved deterministically in polynomial time if a global optimality condition is satisfied. The so-called pseudo-chaos produced by linear iterative methods are mainly due to the intrinsic numerical error accumulations. Otherwise, the global optimization problem could be NP-hard and the nonlinear system can be really chaotic. A conjecture is proposed, which reveals the connection between chaos in nonlinear dynamics and NP-hardness in computer science. The methodology and the conjecture are verified by applications to the well-known logistic equation, a forced memristive circuit and the Lorenz system. Computational results show that the canonical duality theory can be used to identify chaotic systems and to obtain realistic global optimal solutions in nonlinear dynamical systems. The method and results presented in this paper should bring some new insights into nonlinear dynamical systems and NP-hardness in computational complexity theory. © 2016 World Scientific Publishing Company.

**Authors:**Latorre, Vittorio , Gao, David**Date:**2016**Type:**Text , Journal article**Relation:**International Journal of Bifurcation and Chaos Vol. 26, no. 8 (2016), p. 1-14**Full Text:****Reviewed:****Description:**This paper presents an unconventional theory and method for solving general nonlinear dynamical systems. Instead of the direct iterative methods, the discretized nonlinear system is first formulated as a global optimization problem via the least squares method. A newly developed canonical duality theory shows that this nonconvex minimization problem can be solved deterministically in polynomial time if a global optimality condition is satisfied. The so-called pseudo-chaos produced by linear iterative methods are mainly due to the intrinsic numerical error accumulations. Otherwise, the global optimization problem could be NP-hard and the nonlinear system can be really chaotic. A conjecture is proposed, which reveals the connection between chaos in nonlinear dynamics and NP-hardness in computer science. The methodology and the conjecture are verified by applications to the well-known logistic equation, a forced memristive circuit and the Lorenz system. Computational results show that the canonical duality theory can be used to identify chaotic systems and to obtain realistic global optimal solutions in nonlinear dynamical systems. The method and results presented in this paper should bring some new insights into nonlinear dynamical systems and NP-hardness in computational complexity theory. © 2016 World Scientific Publishing Company.

Global solutions to a class of CEC benchmark constrained optimization problems

- Zhou, Xiaojun, Gao, David, Yang, Chunhua

**Authors:**Zhou, Xiaojun , Gao, David , Yang, Chunhua**Date:**2016**Type:**Text , Journal article**Relation:**Optimization Letters Vol. 10, no. 3 (2016), p. 457-472**Full Text:****Reviewed:****Description:**This paper aims to solve a class of CEC benchmark constrained optimization problems that have been widely studied by nature-inspired optimization algorithms. Based on canonical duality theory, these challenging problems can be reformulated as a unified canonical dual problem over a convex set, which can be solved deterministically to obtain global optimal solutions in polynomial time. Applications are illustrated by some well-known CEC benchmark problems, and comparisons with other methods have demonstrated the effectiveness of the proposed approach. © 2014, Springer-Verlag Berlin Heidelberg.

**Authors:**Zhou, Xiaojun , Gao, David , Yang, Chunhua**Date:**2016**Type:**Text , Journal article**Relation:**Optimization Letters Vol. 10, no. 3 (2016), p. 457-472**Full Text:****Reviewed:****Description:**This paper aims to solve a class of CEC benchmark constrained optimization problems that have been widely studied by nature-inspired optimization algorithms. Based on canonical duality theory, these challenging problems can be reformulated as a unified canonical dual problem over a convex set, which can be solved deterministically to obtain global optimal solutions in polynomial time. Applications are illustrated by some well-known CEC benchmark problems, and comparisons with other methods have demonstrated the effectiveness of the proposed approach. © 2014, Springer-Verlag Berlin Heidelberg.

Global solutions to nonconvex optimization of 4th-order polynomial and log-sum-exp functions

**Authors:**Chen, Yi , Gao, David**Date:**2016**Type:**Text , Journal article**Relation:**Journal of Global Optimization Vol. 64, no. 3 (2016), p. 417-431**Full Text:****Reviewed:****Description:**This paper presents a canonical dual approach for solving a nonconvex global optimization problem governed by a sum of 4th-order polynomial and a log-sum-exp function. Such a problem arises extensively in engineering and sciences. Based on the canonical dualityâ€“triality theory, this nonconvex problem is transformed to an equivalent dual problem, which can be solved easily under certain conditions. We proved that both global minimizer and the biggest local extrema of the primal problem can be obtained analytically from the canonical dual solutions. As two special cases, a quartic polynomial minimization and a minimax problem are discussed. Existence conditions are derived, which can be used to classify easy and relative hard instances. Applications are illustrated by several nonconvex and nonsmooth examples. © 2014, Springer Science+Business Media New York.

**Authors:**Chen, Yi , Gao, David**Date:**2016**Type:**Text , Journal article**Relation:**Journal of Global Optimization Vol. 64, no. 3 (2016), p. 417-431**Full Text:****Reviewed:****Description:**This paper presents a canonical dual approach for solving a nonconvex global optimization problem governed by a sum of 4th-order polynomial and a log-sum-exp function. Such a problem arises extensively in engineering and sciences. Based on the canonical dualityâ€“triality theory, this nonconvex problem is transformed to an equivalent dual problem, which can be solved easily under certain conditions. We proved that both global minimizer and the biggest local extrema of the primal problem can be obtained analytically from the canonical dual solutions. As two special cases, a quartic polynomial minimization and a minimax problem are discussed. Existence conditions are derived, which can be used to classify easy and relative hard instances. Applications are illustrated by several nonconvex and nonsmooth examples. © 2014, Springer Science+Business Media New York.

Nonlinear metric subregularity

**Authors:**Kruger, Alexander**Date:**2016**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 171, no. 3 (2016), p. 820-855**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**In this article, we investigate nonlinear metric subregularity properties of set-valued mappings between general metric or Banach spaces. We demonstrate that these properties can be treated in the framework of the theory of (linear) error bounds for extended real-valued functions of two variables developed in Kruger (Error bounds and metric subregularity. Optimization 64(1):49-79, 2015). Several primal and dual space local quantitative and qualitative criteria of nonlinear metric subregularity are formulated. The relationships between the criteria are established and illustrated.

**Authors:**Kruger, Alexander**Date:**2016**Type:**Text , Journal article**Relation:**Journal of Optimization Theory and Applications Vol. 171, no. 3 (2016), p. 820-855**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**In this article, we investigate nonlinear metric subregularity properties of set-valued mappings between general metric or Banach spaces. We demonstrate that these properties can be treated in the framework of the theory of (linear) error bounds for extended real-valued functions of two variables developed in Kruger (Error bounds and metric subregularity. Optimization 64(1):49-79, 2015). Several primal and dual space local quantitative and qualitative criteria of nonlinear metric subregularity are formulated. The relationships between the criteria are established and illustrated.

On lipschitzian properties of implicit multifunctions

- Gfrerer, Helmut, Outrata, Jiri

**Authors:**Gfrerer, Helmut , Outrata, Jiri**Date:**2016**Type:**Text , Journal article**Relation:**SIAM Journal on Optimization Vol. 26, no. 4 (2016), p. 2160-2189**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**This paper is devoted to the development of new sufficient conditions for the calmness and the Aubin property of implicit multifunctions. As the basic tool we employ the directional limiting coderivative which, together with the graphical derivative, enables a fine analysis of the local behavior of the investigated multifunction along relevant directions. For verification of the calmness property, in addition, a new condition has been discovered which parallels the missing implicit function paradigm and permits us to replace the original multifunction by a substantially simpler one. Moreover, as an auxiliary tool, a handy formula for the computation of the directional limiting coderivative of the normal-cone map with a polyhedral set has been derived which perfectly matches the framework of [A. L. Dontchev and R. T. Rockafellar, SIAM J. Optim., 6 (1996), pp. 1087{1105]. All important statements are illustrated by examples. © 2016 Society for Industrial and Applied Mathematics.

**Authors:**Gfrerer, Helmut , Outrata, Jiri**Date:**2016**Type:**Text , Journal article**Relation:**SIAM Journal on Optimization Vol. 26, no. 4 (2016), p. 2160-2189**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**This paper is devoted to the development of new sufficient conditions for the calmness and the Aubin property of implicit multifunctions. As the basic tool we employ the directional limiting coderivative which, together with the graphical derivative, enables a fine analysis of the local behavior of the investigated multifunction along relevant directions. For verification of the calmness property, in addition, a new condition has been discovered which parallels the missing implicit function paradigm and permits us to replace the original multifunction by a substantially simpler one. Moreover, as an auxiliary tool, a handy formula for the computation of the directional limiting coderivative of the normal-cone map with a polyhedral set has been derived which perfectly matches the framework of [A. L. Dontchev and R. T. Rockafellar, SIAM J. Optim., 6 (1996), pp. 1087{1105]. All important statements are illustrated by examples. © 2016 Society for Industrial and Applied Mathematics.

Towards supremum-sum subdifferential calculus free of qualification conditions

- Correa, Rafael, Hantoute, Abderrahim, Lopez, Marco

**Authors:**Correa, Rafael , Hantoute, Abderrahim , Lopez, Marco**Date:**2016**Type:**Text , Journal article**Relation:**Siam Journal on Optimization Vol. 26, no. 4 (2016), p. 2219-2234**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**We give a formula for the subdifferential of the sum of two convex functions where one of them is the supremum of an arbitrary family of convex functions. This is carried out under a weak assumption expressing a natural relationship between the lower semicontinuous envelopes of the data functions in the domain of the sum function. We also provide a new rule for the subdifferential of the sum of two convex functions, which uses a strategy of augmenting the involved functions. The main feature of our analysis is that no continuity-type condition is required. Our approach allows us to unify, recover, and extend different results in the recent literature.

**Authors:**Correa, Rafael , Hantoute, Abderrahim , Lopez, Marco**Date:**2016**Type:**Text , Journal article**Relation:**Siam Journal on Optimization Vol. 26, no. 4 (2016), p. 2219-2234**Relation:**http://purl.org/au-research/grants/arc/DP160100854**Full Text:****Reviewed:****Description:**We give a formula for the subdifferential of the sum of two convex functions where one of them is the supremum of an arbitrary family of convex functions. This is carried out under a weak assumption expressing a natural relationship between the lower semicontinuous envelopes of the data functions in the domain of the sum function. We also provide a new rule for the subdifferential of the sum of two convex functions, which uses a strategy of augmenting the involved functions. The main feature of our analysis is that no continuity-type condition is required. Our approach allows us to unify, recover, and extend different results in the recent literature.

An induction theorem and nonlinear regularity models

- Khanh, Phan, Kruger, Alexander, Thao, Nguyen

**Authors:**Khanh, Phan , Kruger, Alexander , Thao, Nguyen**Date:**2015**Type:**Text , Journal article**Relation:**Siam Journal on Optimization Vol. 25, no. 4 (2015), p. 2561-2588**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**A general nonlinear regularity model for a set-valued mapping F : X x R+ paired right arrows Y, where X and Y are metric spaces, is studied using special iteration procedures, going back to Banach, Schauder, Lyusternik, and Graves. Namely, we revise the induction theorem from Khanh [J. Math. Anal. Appl., 118 (1986), pp. 519-534] and employ it to obtain basic estimates for exploring regularity/openness properties. We also show that it can serve as a substitution for the Ekeland variational principle when establishing other regularity criteria. Then, we apply the induction theorem and the mentioned estimates to establish criteria for both global and local versions of regularity/openness properties for our model and demonstrate how the definitions and criteria translate into the conventional setting of a set-valued mapping F : X paired right arrows Y. An application to second-order necessary optimality conditions for a nonsmooth set-valued optimization problem with mixed constraints is provided.

**Authors:**Khanh, Phan , Kruger, Alexander , Thao, Nguyen**Date:**2015**Type:**Text , Journal article**Relation:**Siam Journal on Optimization Vol. 25, no. 4 (2015), p. 2561-2588**Relation:**http://purl.org/au-research/grants/arc/DP110102011**Full Text:****Reviewed:****Description:**A general nonlinear regularity model for a set-valued mapping F : X x R+ paired right arrows Y, where X and Y are metric spaces, is studied using special iteration procedures, going back to Banach, Schauder, Lyusternik, and Graves. Namely, we revise the induction theorem from Khanh [J. Math. Anal. Appl., 118 (1986), pp. 519-534] and employ it to obtain basic estimates for exploring regularity/openness properties. We also show that it can serve as a substitution for the Ekeland variational principle when establishing other regularity criteria. Then, we apply the induction theorem and the mentioned estimates to establish criteria for both global and local versions of regularity/openness properties for our model and demonstrate how the definitions and criteria translate into the conventional setting of a set-valued mapping F : X paired right arrows Y. An application to second-order necessary optimality conditions for a nonsmooth set-valued optimization problem with mixed constraints is provided.

Are you sure you would like to clear your session, including search history and login status?