Your selections:

Show More

Show Less

On consecutive edge magic total labeling of graphs

- Sugeng, Kiki Ariyanti, Miller, Mirka

**Authors:**Sugeng, Kiki Ariyanti , Miller, Mirka**Date:**2008**Type:**Text , Journal article**Relation:**Journal of Discrete Algorithms Vol. 6, no. 1 (2008), p. 59-65**Full Text:**false**Reviewed:****Description:**Let G = (V, E) be a finite (non-empty) graph, where V and E are the sets of vertices and edges of G. An edge magic total labeling is a bijection**Description:**C1

On the degrees of a strongly vertex-magic graph

- Balbuena, Camino, Barker, Ewan, Das, K. C., Lin, Yuqing, Miller, Mirka, Ryan, Joe, Slamin,, Sugeng, Kiki Ariyanti, Tkac, M.

**Authors:**Balbuena, Camino , Barker, Ewan , Das, K. C. , Lin, Yuqing , Miller, Mirka , Ryan, Joe , Slamin, , Sugeng, Kiki Ariyanti , Tkac, M.**Date:**2006**Type:**Text , Journal article**Relation:**Discrete Mathematics Vol. 306, no. 6 (2006), p. 539-551**Full Text:**false**Reviewed:****Description:**Let G=(V,E) be a finite graph, where |V|=n≥2 and |E|=e≥1. A vertex-magic total labeling is a bijection λ from V∪E to the set of consecutive integers {1,2,...,n+e} with the property that for every v∈V, λ(v)+∑w∈N(v)λ(vw)=h for some constant h. Such a labeling is strong if λ(V)={1,2,...,n}. In this paper, we prove first that the minimum degree of a strongly vertex-magic graph is at least two. Next, we show that if 2e≥10n2-6n+1, then the minimum degree of a strongly vertex-magic graph is at least three. Further, we obtain upper and lower bounds of any vertex degree in terms of n and e. As a consequence we show that a strongly vertex-magic graph is maximally edge-connected and hamiltonian if the number of edges is large enough. Finally, we prove that semi-regular bipartite graphs are not strongly vertex-magic graphs, and we provide strongly vertex-magic total labeling of certain families of circulant graphs. © 2006 Elsevier B.V. All rights reserved**Description:**C1**Description:**2003001603

Two new families of large compound graphs

- Marti, J. Gomez, Miller, Mirka

**Authors:**Marti, J. Gomez , Miller, Mirka**Date:**2006**Type:**Text , Journal article**Relation:**Networks Vol. 47, no. 3 (2006), p. 140-146**Full Text:**false**Reviewed:****Description:**A question of special interest in graph theory is the design of large graphs. Specifically, we want to find constructions of graphs with order as large as possible for a given degree A and diameter D. Two generalizations of two large compound graphs are proposed in this article. Three particular cases of these families of graphs presented here allow us to improve the order for the entries (15, 7), (13, 10), and (15, 10) in the table of the largest known (Δ, D)-graphs. © 2006 Wiley Periodicals, Inc.**Description:**C1**Description:**2003001599

All (k;g)-cages are k-edge-connected

- Lin, Yuqing, Miller, Mirka, Rodger, Chris

**Authors:**Lin, Yuqing , Miller, Mirka , Rodger, Chris**Date:**2005**Type:**Text , Journal article**Relation:**Journal of Graph Theory Vol. 48, no. 3 (2005), p. 219-227**Full Text:**false**Reviewed:****Description:**A (k;g)-cage is a k-regular graph with girth g and with the least possible number of vertices. In this paper, we prove that (k;g)-cages are k-edge-connected if g is even. Earlier, Wang, Xu, and Wang proved that (k;g)-cages are k-edge-connected if g is odd. Combining our results, we conclude that the (k;g)-cages are k-edge-connected. © 2005 wiley Periodicals, Inc.**Description:**C1

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?