Your selections:

40101 Pure Mathematics
30103 Numerical and Computational Mathematics
2Degree/diameter problem
2Graph theory
2Numerical methods
1(Δ, D)-problem
10102 Applied Mathematics
1Bipartite Moore graphs
1Compound graphs
1Compounding of graphs
1Connectivity
1Degree
1Diameter
1Diameter 2 and defect
1Edge connectivity
1Edge-superconnected
1Graphs
1Interconnection networks
1Moore graphs

Show More

Show Less

Format Type

New largest known graphs of diameter 6

- Pineda-Villavicencio, Guillermo, Gómez, José, Miller, Mirka, Pérez-Rosés, Hebert

**Authors:**Pineda-Villavicencio, Guillermo , Gómez, José , Miller, Mirka , Pérez-Rosés, Hebert**Date:**2009**Type:**Text , Journal article**Relation:**Networks Vol. 53, no. 4 (2009), p. 315-328**Full Text:****Reviewed:****Description:**In the pursuit of obtaining largest graphs of given maximum degree**Description:**2003007890

**Authors:**Pineda-Villavicencio, Guillermo , Gómez, José , Miller, Mirka , Pérez-Rosés, Hebert**Date:**2009**Type:**Text , Journal article**Relation:**Networks Vol. 53, no. 4 (2009), p. 315-328**Full Text:****Reviewed:****Description:**In the pursuit of obtaining largest graphs of given maximum degree**Description:**2003007890

On the nonexistence of graphs of diameter 2 and defect 2

- Miller, Mirka, Nguyen, Minh Hoang, Pineda-Villavicencio, Guillermo

**Authors:**Miller, Mirka , Nguyen, Minh Hoang , Pineda-Villavicencio, Guillermo**Date:**2009**Type:**Text , Journal article**Relation:**The Journal of Combinatorial Mathematics and Combinatorial Computing Vol. 71, no. (2009), p. 5-20**Full Text:**false**Reviewed:****Description:**In 1960, Hoffman and Singleton investigated the existence of Moore graphs of diameter 2 (graphs of maximum degree d and d² + 1 vertices), and found that such graphs exist only for d = 2; 3; 7 and possibly 57. In 1980, Erdös et al., using eigenvalue analysis, showed that, with the exception of C4, there are no graphs of diameter 2, maximum degree d and d² vertices. In this paper, we show that graphs of diameter 2, maximum degree d and d² - 1 vertices do not exist for most values of d with d ≥ 6, and conjecture that they do not exist for any d ≥ 6.**Description:**2003007893

New constructions of A-magic graphs using labeling matrices

- Sugeng, Kiki Ariyanti, Miller, Mirka

**Authors:**Sugeng, Kiki Ariyanti , Miller, Mirka**Date:**2008**Type:**Text , Journal article**Relation:**Journal of combinatorial mathematics and combinatorial computing Vol. 65, no. (May 2008), p. 147-151**Full Text:**false**Reviewed:**

On antimagic labelings of disjoint union of complete s-partite graphs

- Dafik, Miller, Mirka, Ryan, Joe, Baca, Martin

**Authors:**Dafik , Miller, Mirka , Ryan, Joe , Baca, Martin**Date:**2008**Type:**Text , Journal article**Relation:**Journal of combinatorial mathematics and combinatorial computing Vol. 65, no. (May 2008 2008), p. 41-49**Full Text:****Reviewed:****Description:**By an (a, d)-edge-antimagic total labeling of a graph G(V, E) we mean a bijective function f from V(G) u E(G) onto the set. { 1, 2, ... ,ǀV(C)ǀ+IE(G)I} such that the set of all the edge-weights, w(uv) ,.... f(u) + f(uv) + f(v), uv C E (G), is {a, a+ d, a+ 2d, . . . , a + (lE(G)I-1)d}, for two integers a > 0 and d

**Authors:**Dafik , Miller, Mirka , Ryan, Joe , Baca, Martin**Date:**2008**Type:**Text , Journal article**Relation:**Journal of combinatorial mathematics and combinatorial computing Vol. 65, no. (May 2008 2008), p. 41-49**Full Text:****Reviewed:****Description:**By an (a, d)-edge-antimagic total labeling of a graph G(V, E) we mean a bijective function f from V(G) u E(G) onto the set. { 1, 2, ... ,ǀV(C)ǀ+IE(G)I} such that the set of all the edge-weights, w(uv) ,.... f(u) + f(uv) + f(v), uv C E (G), is {a, a+ d, a+ 2d, . . . , a + (lE(G)I-1)d}, for two integers a > 0 and d

On graphs of maximum degree 3 and defect 4

- Pineda-Villavicencio, Guillermo, Miller, Mirka

**Authors:**Pineda-Villavicencio, Guillermo , Miller, Mirka**Date:**2008**Type:**Text , Journal article**Relation:**Journal of combinatorial mathematics and combinatorial computing Vol. 65, no. (May 2008), p. 25-31**Full Text:**false**Reviewed:****Description:**It is well known that apart from the Petersen graph there are no Moore graphs of degree 3. As a cubic graph must have an even number of vertices, there are no graphs of maximum degree 3 and

All (k;g)-cages are edge-superconnected

- Lin, Yuqing, Miller, Mirka, Balbuena, Camino, Marcote, Xavier

**Authors:**Lin, Yuqing , Miller, Mirka , Balbuena, Camino , Marcote, Xavier**Date:**2006**Type:**Text , Journal article**Relation:**Networks Vol. 47, no. 2 (2006), p. 102-110**Full Text:**false**Reviewed:****Description:**A (k;g)-cage is k-regular graph with girth g and with the least possible number of vertices. In this article we prove that (k;g)-cages are edge-superconnected if g is even. Earlier, Marcote and Balbuena proved that (k;g)-cages are edge-superconnected if g is odd [Networks 43 (2004), 54-59]. Combining our results, we conclude that all (k;g)-cages are edge-superconnected. © 2005 Wiley Periodicals, Inc.**Description:**C1**Description:**2003001830

Two new families of large compound graphs

- Marti, J. Gomez, Miller, Mirka

**Authors:**Marti, J. Gomez , Miller, Mirka**Date:**2006**Type:**Text , Journal article**Relation:**Networks Vol. 47, no. 3 (2006), p. 140-146**Full Text:**false**Reviewed:****Description:**A question of special interest in graph theory is the design of large graphs. Specifically, we want to find constructions of graphs with order as large as possible for a given degree A and diameter D. Two generalizations of two large compound graphs are proposed in this article. Three particular cases of these families of graphs presented here allow us to improve the order for the entries (15, 7), (13, 10), and (15, 10) in the table of the largest known (Δ, D)-graphs. © 2006 Wiley Periodicals, Inc.**Description:**C1**Description:**2003001599

Delta-optimum exclusive sum labeling of certain graphs with radius one

- Tuga, Mauritsius, Miller, Mirka

**Authors:**Tuga, Mauritsius , Miller, Mirka**Date:**2005**Type:**Text , Journal article**Relation:**Lecture Notes in Computer Science Vol. 3330, no. (2005), p. 216-225**Full Text:**false**Reviewed:****Description:**A mapping**Description:**C1**Description:**2003001413

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?