A3Graph : adversarial attributed autoencoder for graph representation learning
- Hou, Mingliang, Wang, Lei, Liu, Jiaying, Kong, Xiangjie, Xia, Feng
- Authors: Hou, Mingliang , Wang, Lei , Liu, Jiaying , Kong, Xiangjie , Xia, Feng
- Date: 2021
- Type: Text , Conference paper
- Relation: 36th Annual ACM Symposium on Applied Computing, SAC 2021 p. 1697-1704
- Full Text:
- Reviewed:
- Description: Recent years have witnessed a proliferation of graph representation techniques in social network analysis. Graph representation aims to map nodes in the graph into low-dimensional vector space while preserving as much information as possible. However, most existing methods ignore the robustness of learned latent vectors, which leads to inferior representation results due to sparse and noisy data in graphs. In this paper, we propose a novel framework, named A3Graph, which aims to improve the robustness and stability of graph representations. Specifically, we first construct an aggregation matrix by the combining positive point-wise mutual information matrix with the attribute matrix. Then, we enforce the autoencoder to reconstruct the aggregation matrix instead of the input attribute matrix. The enhancement autoencoder can incorporate structural and attributed information in a joint learning way to improve the noise-resilient during the learning process. Furthermore, an adversarial learning component is leveraged in our framework to impose a prior distribution on learned representations has been demonstrated as an effective mechanism in improving the robustness and stability in representation learning. Experimental studies on real-world datasets have demonstrated the effectiveness of the proposed A3Graph. © 2021 ACM.
- Authors: Hou, Mingliang , Wang, Lei , Liu, Jiaying , Kong, Xiangjie , Xia, Feng
- Date: 2021
- Type: Text , Conference paper
- Relation: 36th Annual ACM Symposium on Applied Computing, SAC 2021 p. 1697-1704
- Full Text:
- Reviewed:
- Description: Recent years have witnessed a proliferation of graph representation techniques in social network analysis. Graph representation aims to map nodes in the graph into low-dimensional vector space while preserving as much information as possible. However, most existing methods ignore the robustness of learned latent vectors, which leads to inferior representation results due to sparse and noisy data in graphs. In this paper, we propose a novel framework, named A3Graph, which aims to improve the robustness and stability of graph representations. Specifically, we first construct an aggregation matrix by the combining positive point-wise mutual information matrix with the attribute matrix. Then, we enforce the autoencoder to reconstruct the aggregation matrix instead of the input attribute matrix. The enhancement autoencoder can incorporate structural and attributed information in a joint learning way to improve the noise-resilient during the learning process. Furthermore, an adversarial learning component is leveraged in our framework to impose a prior distribution on learned representations has been demonstrated as an effective mechanism in improving the robustness and stability in representation learning. Experimental studies on real-world datasets have demonstrated the effectiveness of the proposed A3Graph. © 2021 ACM.
Adaptive capacity task offloading in multi-hop D2D-based social industrial IoT
- Ibrar, Muhammad, Wang, Lei, Akbar, Aamir, Jan, Mian, Balasubramanian, Venki, Muntean, Gabriel-Miro, Shah, Nadir
- Authors: Ibrar, Muhammad , Wang, Lei , Akbar, Aamir , Jan, Mian , Balasubramanian, Venki , Muntean, Gabriel-Miro , Shah, Nadir
- Date: 2023
- Type: Text , Journal article
- Relation: IEEE Transactions on Network Science and Engineering Vol. 10, no. 5 (2023), p. 2843-2852
- Full Text: false
- Reviewed:
- Description: Traditional communication technologies such as cellular networks are facing problems to support high service quality when used for time-critical applications in an Industrial Internet-of-Things (IIoT) context, including real-time data transmission, route dependability, and scalability. To address these problems, device-to-device (D2D) communications based on social relationships can be used, which allow for task-offloading: resource-rich devices share unused computing resources with resource constraint devices. However, unbalanced task offloading in Social IIoT (SIIoT) might actually degrade the overall system performance, which is not desirable. In this paper, we propose an adaptive capacity task offloading solution for D2D-based social industrial IoT (ToSIIoT) which considers devices utilization ratio and strength of social relationships in order to improve resource utilization, increase QoS and achieve better task completion rate. The proposed approach consists of three aspects: social-aware relay selection in a multi-hop D2D communication context, choice of a resource-rich SIIoT device for task offloading, and adaptive redistribution of tasks. The paper proposes heuristic algorithms, as finding optimal solutions to the problems are NP-hard. Extensive experimental results show that the proposed ToSIIoT performs better than existing approaches in terms of utilization ratio, QoS violation, average execution delay, and task completion ratio. © 2013 IEEE.
API : an index for quantifying a scholar's academic potential
- Ren, Jing, Wang, Lei, Wang, Kailai, Yu, Shuo, Hou, Mingliang, Lee, Ivan, Kong, Xiangjie, Xia, Feng
- Authors: Ren, Jing , Wang, Lei , Wang, Kailai , Yu, Shuo , Hou, Mingliang , Lee, Ivan , Kong, Xiangjie , Xia, Feng
- Date: 2019
- Type: Text , Journal article
- Relation: IEEE Access Vol. 7, no. (2019), p. 178675-178684
- Full Text:
- Reviewed:
- Description: In the context of big scholarly data, various metrics and indicators have been widely applied to evaluate the impact of scholars from different perspectives, such as publication counts, citations, ${h}$-index, and their variants. However, these indicators have limited capacity in characterizing prospective impacts or achievements of scholars. To solve this problem, we propose the Academic Potential Index (API) to quantify scholar's academic potential. Furthermore, an algorithm is devised to calculate the value of API. It should be noted that API is a dynamic index throughout scholar's academic career. By applying API to rank scholars, we can identify scholars who show their academic potentials during the early academic careers. With extensive experiments conducted based on the Microsoft Academic Graph dataset, it can be found that the proposed index evaluates scholars' academic potentials effectively and captures the variation tendency of their academic impacts. Besides, we also apply this index to identify rising stars in academia. Experimental results show that the proposed API can achieve superior performance in identifying potential scholars compared with three baseline methods. © 2019 IEEE.
- Authors: Ren, Jing , Wang, Lei , Wang, Kailai , Yu, Shuo , Hou, Mingliang , Lee, Ivan , Kong, Xiangjie , Xia, Feng
- Date: 2019
- Type: Text , Journal article
- Relation: IEEE Access Vol. 7, no. (2019), p. 178675-178684
- Full Text:
- Reviewed:
- Description: In the context of big scholarly data, various metrics and indicators have been widely applied to evaluate the impact of scholars from different perspectives, such as publication counts, citations, ${h}$-index, and their variants. However, these indicators have limited capacity in characterizing prospective impacts or achievements of scholars. To solve this problem, we propose the Academic Potential Index (API) to quantify scholar's academic potential. Furthermore, an algorithm is devised to calculate the value of API. It should be noted that API is a dynamic index throughout scholar's academic career. By applying API to rank scholars, we can identify scholars who show their academic potentials during the early academic careers. With extensive experiments conducted based on the Microsoft Academic Graph dataset, it can be found that the proposed index evaluates scholars' academic potentials effectively and captures the variation tendency of their academic impacts. Besides, we also apply this index to identify rising stars in academia. Experimental results show that the proposed API can achieve superior performance in identifying potential scholars compared with three baseline methods. © 2019 IEEE.
CenGCN : centralized convolutional networks with vertex imbalance for scale-free graphs
- Xia, Feng, Wang, Lei, Tang, Tao, Chen, Xin, Kong, Xiangjie, Oatley, Giles, King, Irwin
- Authors: Xia, Feng , Wang, Lei , Tang, Tao , Chen, Xin , Kong, Xiangjie , Oatley, Giles , King, Irwin
- Date: 2023
- Type: Text , Journal article
- Relation: IEEE Transactions on Knowledge and Data Engineering Vol. 35, no. 5 (2023), p. 4555-4569
- Full Text:
- Reviewed:
- Description: Graph Convolutional Networks (GCNs) have achieved impressive performance in a wide variety of areas, attracting considerable attention. The core step of GCNs is the information-passing framework that considers all information from neighbors to the central vertex to be equally important. Such equal importance, however, is inadequate for scale-free networks, where hub vertices propagate more dominant information due to vertex imbalance. In this paper, we propose a novel centrality-based framework named CenGCN to address the inequality of information. This framework first quantifies the similarity between hub vertices and their neighbors by label propagation with hub vertices. Based on this similarity and centrality indices, the framework transforms the graph by increasing or decreasing the weights of edges connecting hub vertices and adding self-connections to vertices. In each non-output layer of the GCN, this framework uses a hub attention mechanism to assign new weights to connected non-hub vertices based on their common information with hub vertices. We present two variants CenGCN_D and CenGCN_E, based on degree centrality and eigenvector centrality, respectively. We also conduct comprehensive experiments, including vertex classification, link prediction, vertex clustering, and network visualization. The results demonstrate that the two variants significantly outperform state-of-the-art baselines. © 1989-2012 IEEE.
- Authors: Xia, Feng , Wang, Lei , Tang, Tao , Chen, Xin , Kong, Xiangjie , Oatley, Giles , King, Irwin
- Date: 2023
- Type: Text , Journal article
- Relation: IEEE Transactions on Knowledge and Data Engineering Vol. 35, no. 5 (2023), p. 4555-4569
- Full Text:
- Reviewed:
- Description: Graph Convolutional Networks (GCNs) have achieved impressive performance in a wide variety of areas, attracting considerable attention. The core step of GCNs is the information-passing framework that considers all information from neighbors to the central vertex to be equally important. Such equal importance, however, is inadequate for scale-free networks, where hub vertices propagate more dominant information due to vertex imbalance. In this paper, we propose a novel centrality-based framework named CenGCN to address the inequality of information. This framework first quantifies the similarity between hub vertices and their neighbors by label propagation with hub vertices. Based on this similarity and centrality indices, the framework transforms the graph by increasing or decreasing the weights of edges connecting hub vertices and adding self-connections to vertices. In each non-output layer of the GCN, this framework uses a hub attention mechanism to assign new weights to connected non-hub vertices based on their common information with hub vertices. We present two variants CenGCN_D and CenGCN_E, based on degree centrality and eigenvector centrality, respectively. We also conduct comprehensive experiments, including vertex classification, link prediction, vertex clustering, and network visualization. The results demonstrate that the two variants significantly outperform state-of-the-art baselines. © 1989-2012 IEEE.
Fairness-aware predictive graph learning in social networks
- Wang, Lei, Yu, Shuo, Febrinanto, Falih, Alqahtani, Fayez, El-Tobely, Tarek
- Authors: Wang, Lei , Yu, Shuo , Febrinanto, Falih , Alqahtani, Fayez , El-Tobely, Tarek
- Date: 2022
- Type: Text , Journal article
- Relation: Mathematics Vol. 10, no. 15 (2022), p.
- Full Text:
- Reviewed:
- Description: Predictive graph learning approaches have been bringing significant advantages in many real-life applications, such as social networks, recommender systems, and other social-related downstream tasks. For those applications, learning models should be able to produce a great prediction result to maximize the usability of their application. However, the paradigm of current graph learning methods generally neglects the differences in link strength, leading to discriminative predictive results, resulting in different performance between tasks. Based on that problem, a fairness-aware predictive learning model is needed to balance the link strength differences and not only consider how to formulate it. To address this problem, we first formally define two biases (i.e., Preference and Favoritism) that widely exist in previous representation learning models. Then, we employ modularity maximization to distinguish strong and weak links from the quantitative perspective. Eventually, we propose a novel predictive learning framework entitled ACE that first implements the link strength differentiated learning process and then integrates it with a dual propagation process. The effectiveness and fairness of our proposed ACE have been verified on four real-world social networks. Compared to nine different state-of-the-art methods, ACE and its variants show better performance. The ACE framework can better reconstruct networks, thus also providing a high possibility of resolving misinformation in graph-structured data. © 2022 by the authors.
- Authors: Wang, Lei , Yu, Shuo , Febrinanto, Falih , Alqahtani, Fayez , El-Tobely, Tarek
- Date: 2022
- Type: Text , Journal article
- Relation: Mathematics Vol. 10, no. 15 (2022), p.
- Full Text:
- Reviewed:
- Description: Predictive graph learning approaches have been bringing significant advantages in many real-life applications, such as social networks, recommender systems, and other social-related downstream tasks. For those applications, learning models should be able to produce a great prediction result to maximize the usability of their application. However, the paradigm of current graph learning methods generally neglects the differences in link strength, leading to discriminative predictive results, resulting in different performance between tasks. Based on that problem, a fairness-aware predictive learning model is needed to balance the link strength differences and not only consider how to formulate it. To address this problem, we first formally define two biases (i.e., Preference and Favoritism) that widely exist in previous representation learning models. Then, we employ modularity maximization to distinguish strong and weak links from the quantitative perspective. Eventually, we propose a novel predictive learning framework entitled ACE that first implements the link strength differentiated learning process and then integrates it with a dual propagation process. The effectiveness and fairness of our proposed ACE have been verified on four real-world social networks. Compared to nine different state-of-the-art methods, ACE and its variants show better performance. The ACE framework can better reconstruct networks, thus also providing a high possibility of resolving misinformation in graph-structured data. © 2022 by the authors.
MODEL : motif-based deep feature learning for link prediction
- Wang, Lei, Ren, Jing, Xu, Bo, Li, Jianxin, Luo, Wei, Xia, Feng
- Authors: Wang, Lei , Ren, Jing , Xu, Bo , Li, Jianxin , Luo, Wei , Xia, Feng
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Transactions on Computational Social Systems Vol. 7, no. 2 (2020), p. 503-516
- Full Text:
- Reviewed:
- Description: Link prediction plays an important role in network analysis and applications. Recently, approaches for link prediction have evolved from traditional similarity-based algorithms into embedding-based algorithms. However, most existing approaches fail to exploit the fact that real-world networks are different from random networks. In particular, real-world networks are known to contain motifs, natural network building blocks reflecting the underlying network-generating processes. In this article, we propose a novel embedding algorithm that incorporates network motifs to capture higher order structures in the network. To evaluate its effectiveness for link prediction, experiments were conducted on three types of networks: social networks, biological networks, and academic networks. The results demonstrate that our algorithm outperforms both the traditional similarity-based algorithms (by 20%) and the state-of-the-art embedding-based algorithms (by 19%). © 2014 IEEE.
- Authors: Wang, Lei , Ren, Jing , Xu, Bo , Li, Jianxin , Luo, Wei , Xia, Feng
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Transactions on Computational Social Systems Vol. 7, no. 2 (2020), p. 503-516
- Full Text:
- Reviewed:
- Description: Link prediction plays an important role in network analysis and applications. Recently, approaches for link prediction have evolved from traditional similarity-based algorithms into embedding-based algorithms. However, most existing approaches fail to exploit the fact that real-world networks are different from random networks. In particular, real-world networks are known to contain motifs, natural network building blocks reflecting the underlying network-generating processes. In this article, we propose a novel embedding algorithm that incorporates network motifs to capture higher order structures in the network. To evaluate its effectiveness for link prediction, experiments were conducted on three types of networks: social networks, biological networks, and academic networks. The results demonstrate that our algorithm outperforms both the traditional similarity-based algorithms (by 20%) and the state-of-the-art embedding-based algorithms (by 19%). © 2014 IEEE.
Multiheaded deep learning chatbot for increasing production and marketing
- Zheng, Shiyong, Yahya, Zahrah, Wang, Lei, Zhang, Ruihang, Hoshyar, Azadeh
- Authors: Zheng, Shiyong , Yahya, Zahrah , Wang, Lei , Zhang, Ruihang , Hoshyar, Azadeh
- Date: 2023
- Type: Text , Journal article
- Relation: Information Processing and Management Vol. 60, no. 5 (2023), p.
- Full Text: false
- Reviewed:
- Description: Some businesses on product development prefer to use a chatbot for judging the customer's view. Today, the ability of a chatbot to consider the context is challenging due to its technical nature. Sometimes, it may misjudge the context, making the wrong decision in predicting the product's originality in the market. This task of chatbot helps the enterprise make huge profits from accurate predictions. However, chatbots may commit errors in dialogs and bring inappropriate responses to users, reducing the confidentiality of product and marketing information. This, in turn, reduces the enterprise gain and imposes cost complications on businesses. To improve the performance of chatbots, AI models are used based on deep learning concepts. This research proposes a multi-headed deep neural network (MH-DNN) model for addressing the logical and fuzzy errors caused by retrieval chatbot models. This model cuts down on the error raised from the information loss. Our experiments extensively trained the model on a large Ubuntu dialog corpus. The recall evaluation scores showed that the MH-DNN approach slightly outperformed selected state-of-the-art retrieval-based chatbot approaches. The results obtained from the MHDNN augmentation approach were pretty impressive. In our proposed work, the MHDNN algorithm exhibited accuracy rates of 94% and 92%, respectively, with and without the help of the Seq2Seq technique. © 2023 Elsevier Ltd
Network representation learning: From traditional feature learning to deep learning
- Sun, Ke, Wang, Lei, Xu, Bo, Zhao, Wenhong, Teng, Shyh, Xia, Feng
- Authors: Sun, Ke , Wang, Lei , Xu, Bo , Zhao, Wenhong , Teng, Shyh , Xia, Feng
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 205600-205617
- Full Text:
- Reviewed:
- Description: Network representation learning (NRL) is an effective graph analytics technique and promotes users to deeply understand the hidden characteristics of graph data. It has been successfully applied in many real-world tasks related to network science, such as social network data processing, biological information processing, and recommender systems. Deep Learning is a powerful tool to learn data features. However, it is non-trivial to generalize deep learning to graph-structured data since it is different from the regular data such as pictures having spatial information and sounds having temporal information. Recently, researchers proposed many deep learning-based methods in the area of NRL. In this survey, we investigate classical NRL from traditional feature learning method to the deep learning-based model, analyze relationships between them, and summarize the latest progress. Finally, we discuss open issues considering NRL and point out the future directions in this field. © 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.
- Authors: Sun, Ke , Wang, Lei , Xu, Bo , Zhao, Wenhong , Teng, Shyh , Xia, Feng
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 205600-205617
- Full Text:
- Reviewed:
- Description: Network representation learning (NRL) is an effective graph analytics technique and promotes users to deeply understand the hidden characteristics of graph data. It has been successfully applied in many real-world tasks related to network science, such as social network data processing, biological information processing, and recommender systems. Deep Learning is a powerful tool to learn data features. However, it is non-trivial to generalize deep learning to graph-structured data since it is different from the regular data such as pictures having spatial information and sounds having temporal information. Recently, researchers proposed many deep learning-based methods in the area of NRL. In this survey, we investigate classical NRL from traditional feature learning method to the deep learning-based model, analyze relationships between them, and summarize the latest progress. Finally, we discuss open issues considering NRL and point out the future directions in this field. © 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.
On the correlation between research complexity and academic competitiveness
- Ren, Jing, Lee, Ivan, Wang, Lei, Chen, Xiangtai, Xia, Feng
- Authors: Ren, Jing , Lee, Ivan , Wang, Lei , Chen, Xiangtai , Xia, Feng
- Date: 2020
- Type: Text , Conference paper
- Relation: 22nd International Conference on Asia-Pacific Digital Libraries, ICADL 2020, Kyoto, Japan, 30 November to 1 December 2020, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12504 LNCS, p. 416-422
- Full Text:
- Reviewed:
- Description: Academic capacity is a common way to reflect the educational level of a country or district. The aim of this study is to explore the difference between the scientific research level of institutions and countries. By proposing an indicator named Citation-weighted Research Complexity Index (CRCI), we profile the academic capacity of universities and countries with respect to research complexity. The relationships between CRCI of universities and other relevant academic evaluation indicators are examined. To explore the correlation between academic capacity and economic level, the relationship between research complexity and GDP per capita is analysed. With experiments on the Microsoft Academic Graph data set, we investigate publications across 183 countries and universities from the Academic Ranking of World Universities in 19 research fields. Experimental results reveal that universities with higher research complexity have higher fitness. In addition, for developed countries, the development of economics has a positive correlation with scientific research. Furthermore, we visualize the current level of scientific research across all disciplines from a global perspective. © 2020, Springer Nature Switzerland AG.
- Authors: Ren, Jing , Lee, Ivan , Wang, Lei , Chen, Xiangtai , Xia, Feng
- Date: 2020
- Type: Text , Conference paper
- Relation: 22nd International Conference on Asia-Pacific Digital Libraries, ICADL 2020, Kyoto, Japan, 30 November to 1 December 2020, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 12504 LNCS, p. 416-422
- Full Text:
- Reviewed:
- Description: Academic capacity is a common way to reflect the educational level of a country or district. The aim of this study is to explore the difference between the scientific research level of institutions and countries. By proposing an indicator named Citation-weighted Research Complexity Index (CRCI), we profile the academic capacity of universities and countries with respect to research complexity. The relationships between CRCI of universities and other relevant academic evaluation indicators are examined. To explore the correlation between academic capacity and economic level, the relationship between research complexity and GDP per capita is analysed. With experiments on the Microsoft Academic Graph data set, we investigate publications across 183 countries and universities from the Academic Ranking of World Universities in 19 research fields. Experimental results reveal that universities with higher research complexity have higher fitness. In addition, for developed countries, the development of economics has a positive correlation with scientific research. Furthermore, we visualize the current level of scientific research across all disciplines from a global perspective. © 2020, Springer Nature Switzerland AG.
Shifu2 : a network representation learning based model for advisor-advisee relationship mining
- Liu, Jiaying, Xia, Feng, Wang, Lei, Xu, Bo, Kong, Xiangjie
- Authors: Liu, Jiaying , Xia, Feng , Wang, Lei , Xu, Bo , Kong, Xiangjie
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Transactions on Knowledge and Data Engineering Vol. 33, no. 4 (2021), p. 1763-1777
- Full Text:
- Reviewed:
- Description: The advisor-advisee relationship represents direct knowledge heritage, and such relationship may not be readily available from academic libraries and search engines. This work aims to discover advisor-advisee relationships hidden behind scientific collaboration networks. For this purpose, we propose a novel model based on Network Representation Learning (NRL), namely Shifu2, which takes the collaboration network as input and the identified advisor-advisee relationship as output. In contrast to existing NRL models, Shifu2 considers not only the network structure but also the semantic information of nodes and edges. Shifu2 encodes nodes and edges into low-dimensional vectors respectively, both of which are then utilized to identify advisor-advisee relationships. Experimental results illustrate improved stability and effectiveness of the proposed model over state-of-the-art methods. In addition, we generate a large-scale academic genealogy dataset by taking advantage of Shifu2. © 1989-2012 IEEE.
- Authors: Liu, Jiaying , Xia, Feng , Wang, Lei , Xu, Bo , Kong, Xiangjie
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Transactions on Knowledge and Data Engineering Vol. 33, no. 4 (2021), p. 1763-1777
- Full Text:
- Reviewed:
- Description: The advisor-advisee relationship represents direct knowledge heritage, and such relationship may not be readily available from academic libraries and search engines. This work aims to discover advisor-advisee relationships hidden behind scientific collaboration networks. For this purpose, we propose a novel model based on Network Representation Learning (NRL), namely Shifu2, which takes the collaboration network as input and the identified advisor-advisee relationship as output. In contrast to existing NRL models, Shifu2 considers not only the network structure but also the semantic information of nodes and edges. Shifu2 encodes nodes and edges into low-dimensional vectors respectively, both of which are then utilized to identify advisor-advisee relationships. Experimental results illustrate improved stability and effectiveness of the proposed model over state-of-the-art methods. In addition, we generate a large-scale academic genealogy dataset by taking advantage of Shifu2. © 1989-2012 IEEE.
- «
- ‹
- 1
- ›
- »