A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage
- Koay, Hui-Fern, Gherardin, Nicholas, Enders, Anselm, Loh, Liyen, Mackay, Laura, Almeida, Catarina, Russ, Brendan, Nold-Petry, Claudia, Nold, Marcel, Bedoui, Sammy, Chen, Zhenjun, Corbett, Alexandra, Eckle, Sidonia, Meehan, Bronwyn, d'Udekem, Yves, Konstantinov, Igor, Lappas, Martha, Liu, Ligong, Goodnow, Chris, Fairlie, David, Rossjohn, Jamie, Chong, Mark, Kedzierska, Katherine, Berzins, Stuart, Belz, Gabrielle, McCluskey, James, Uldrich, Adam, Godfrey, Dale, Pellicci, Daniel
- Authors: Koay, Hui-Fern , Gherardin, Nicholas , Enders, Anselm , Loh, Liyen , Mackay, Laura , Almeida, Catarina , Russ, Brendan , Nold-Petry, Claudia , Nold, Marcel , Bedoui, Sammy , Chen, Zhenjun , Corbett, Alexandra , Eckle, Sidonia , Meehan, Bronwyn , d'Udekem, Yves , Konstantinov, Igor , Lappas, Martha , Liu, Ligong , Goodnow, Chris , Fairlie, David , Rossjohn, Jamie , Chong, Mark , Kedzierska, Katherine , Berzins, Stuart , Belz, Gabrielle , McCluskey, James , Uldrich, Adam , Godfrey, Dale , Pellicci, Daniel
- Date: 2016
- Type: Text , Journal article
- Relation: Nature Immunology Vol. 17, no. 11 (2016), p. 1300-1311
- Full Text:
- Reviewed:
- Description: Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.
- Authors: Koay, Hui-Fern , Gherardin, Nicholas , Enders, Anselm , Loh, Liyen , Mackay, Laura , Almeida, Catarina , Russ, Brendan , Nold-Petry, Claudia , Nold, Marcel , Bedoui, Sammy , Chen, Zhenjun , Corbett, Alexandra , Eckle, Sidonia , Meehan, Bronwyn , d'Udekem, Yves , Konstantinov, Igor , Lappas, Martha , Liu, Ligong , Goodnow, Chris , Fairlie, David , Rossjohn, Jamie , Chong, Mark , Kedzierska, Katherine , Berzins, Stuart , Belz, Gabrielle , McCluskey, James , Uldrich, Adam , Godfrey, Dale , Pellicci, Daniel
- Date: 2016
- Type: Text , Journal article
- Relation: Nature Immunology Vol. 17, no. 11 (2016), p. 1300-1311
- Full Text:
- Reviewed:
- Description: Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.
Cloning, expression, purification and crystallographic studies of galectin-11 from domestic sheep (Ovis aries)
- Sakthivel, Dhanasekaran, Littler, Dene, Shahine, Adam, Troy, Sally, Johnson, Matthew, Rossjohn, Jamie, Piedrafita, David, Beddoe, Travis
- Authors: Sakthivel, Dhanasekaran , Littler, Dene , Shahine, Adam , Troy, Sally , Johnson, Matthew , Rossjohn, Jamie , Piedrafita, David , Beddoe, Travis
- Date: 2015
- Type: Text , Journal article
- Relation: Acta Crystallographica Section:F Structural Biology Communications Vol. 71, no. (2015), p. 993-997
- Full Text:
- Reviewed:
- Description: Galectins are an evolutionarily conserved family of proteins that translate glycan recognition into cellular effects. Galectin-11 is a unique member of the galectin family that is only expressed in ruminants such as sheep, goat and cattle and that plays a critical role in several important biological processes, such as reproduction and parasite-mediated innate immune responses. Currently, these two areas are of major importance for the sustainability of ruminant livestock production. Despite the emerging biological significance of galectin-11, no structural information is available. It is expected that structural studies will unravel the functional mechanisms of galectin-11 activity. Here, the expression, purification and crystallization of the ruminant-specific galectin-11 from domestic sheep and the collection of X-ray data to 2.0 Å resolution are reported. © 2015.
- Authors: Sakthivel, Dhanasekaran , Littler, Dene , Shahine, Adam , Troy, Sally , Johnson, Matthew , Rossjohn, Jamie , Piedrafita, David , Beddoe, Travis
- Date: 2015
- Type: Text , Journal article
- Relation: Acta Crystallographica Section:F Structural Biology Communications Vol. 71, no. (2015), p. 993-997
- Full Text:
- Reviewed:
- Description: Galectins are an evolutionarily conserved family of proteins that translate glycan recognition into cellular effects. Galectin-11 is a unique member of the galectin family that is only expressed in ruminants such as sheep, goat and cattle and that plays a critical role in several important biological processes, such as reproduction and parasite-mediated innate immune responses. Currently, these two areas are of major importance for the sustainability of ruminant livestock production. Despite the emerging biological significance of galectin-11, no structural information is available. It is expected that structural studies will unravel the functional mechanisms of galectin-11 activity. Here, the expression, purification and crystallization of the ruminant-specific galectin-11 from domestic sheep and the collection of X-ray data to 2.0 Å resolution are reported. © 2015.
- «
- ‹
- 1
- ›
- »