A guide to the short, long and circular RNAs in hypertension and cardiovascular disease
- Prestes, Priscilla, Maier, Michelle, Woods, Bradley, Charchar, Fadi
- Authors: Prestes, Priscilla , Maier, Michelle , Woods, Bradley , Charchar, Fadi
- Date: 2020
- Type: Text , Journal article , Review
- Relation: International Journal of Molecular Sciences Vol. 21, no. 10 (2020)
- Full Text:
- Reviewed:
- Description: Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in adults in developed countries. CVD encompasses many diseased states, including hypertension, coronary artery disease and atherosclerosis. Studies in animal models and human studies have elucidated the contribution of many genetic factors, including non-coding RNAs. Non-coding RNAs are RNAs not translated into protein, involved in gene expression regulation post-transcriptionally and implicated in CVD. Of these, circular RNAs (circRNAs) and microRNAs are relevant. CircRNAs are created by the back-splicing of pre-messenger RNA and have been underexplored as contributors to CVD. These circRNAs may also act as biomarkers of human disease, as they can be extracted from whole blood, plasma, saliva and seminal fluid. CircRNAs have recently been implicated in various disease processes, including hypertension and other cardiovascular disease. This review article will explore the promising and emerging roles of circRNAs as potential biomarkers and therapeutic targets in CVD, in particular hypertension. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
- Authors: Prestes, Priscilla , Maier, Michelle , Woods, Bradley , Charchar, Fadi
- Date: 2020
- Type: Text , Journal article , Review
- Relation: International Journal of Molecular Sciences Vol. 21, no. 10 (2020)
- Full Text:
- Reviewed:
- Description: Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in adults in developed countries. CVD encompasses many diseased states, including hypertension, coronary artery disease and atherosclerosis. Studies in animal models and human studies have elucidated the contribution of many genetic factors, including non-coding RNAs. Non-coding RNAs are RNAs not translated into protein, involved in gene expression regulation post-transcriptionally and implicated in CVD. Of these, circular RNAs (circRNAs) and microRNAs are relevant. CircRNAs are created by the back-splicing of pre-messenger RNA and have been underexplored as contributors to CVD. These circRNAs may also act as biomarkers of human disease, as they can be extracted from whole blood, plasma, saliva and seminal fluid. CircRNAs have recently been implicated in various disease processes, including hypertension and other cardiovascular disease. This review article will explore the promising and emerging roles of circRNAs as potential biomarkers and therapeutic targets in CVD, in particular hypertension. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Best practice data life cycle approaches for the life sciences
- Griffin, Philippa, Khadake, Jyoti, LeMay, Kate, Lewis, Suzanna, Orchard, Sandra, Pask, Andrew, Pope, Bernard, Roessner, Ute, Russell, Keith, Seemann, Torsten, Treloar, Andrew, Tyagi, Sonika, Christiansen, Jeffrey, Dayalan, Saravanan, Gladman, Simon, Hangartner, Sandra, Hayden, Helen, Ho, William, Keeble-Gagnère, Gabriel, Korhonen, Pasi, Neish, Peter, Prestes, Priscilla, Richardson, Mark, Watson-Haigh, Nathan, Wyres, Kelly, Young, Neil, Schneider, Maria
- Authors: Griffin, Philippa , Khadake, Jyoti , LeMay, Kate , Lewis, Suzanna , Orchard, Sandra , Pask, Andrew , Pope, Bernard , Roessner, Ute , Russell, Keith , Seemann, Torsten , Treloar, Andrew , Tyagi, Sonika , Christiansen, Jeffrey , Dayalan, Saravanan , Gladman, Simon , Hangartner, Sandra , Hayden, Helen , Ho, William , Keeble-Gagnère, Gabriel , Korhonen, Pasi , Neish, Peter , Prestes, Priscilla , Richardson, Mark , Watson-Haigh, Nathan , Wyres, Kelly , Young, Neil , Schneider, Maria
- Date: 2018
- Type: Text , Journal article
- Relation: F1000 Research Vol. 6, no. (2018), p. 1-28
- Full Text:
- Reviewed:
- Description: Throughout history, the life sciences have been revolutionised by technological advances; in our era this is manifested by advances in instrumentation for data generation, and consequently researchers now routinely handle large amounts of heterogeneous data in digital formats. The simultaneous transitions towards biology as a data science and towards a 'life cycle' view of research data pose new challenges. Researchers face a bewildering landscape of data management requirements, recommendations and regulations, without necessarily being able to access data management training or possessing a clear understanding of practical approaches that can assist in data management in their particular research domain. Here we provide an overview of best practice data life cycle approaches for researchers in the life sciences/bioinformatics space with a particular focus on 'omics' datasets and computer-based data processing and analysis. We discuss the different stages of the data life cycle and provide practical suggestions for useful tools and resources to improve data management practices. © 2018 Griffin PC et al.
- Authors: Griffin, Philippa , Khadake, Jyoti , LeMay, Kate , Lewis, Suzanna , Orchard, Sandra , Pask, Andrew , Pope, Bernard , Roessner, Ute , Russell, Keith , Seemann, Torsten , Treloar, Andrew , Tyagi, Sonika , Christiansen, Jeffrey , Dayalan, Saravanan , Gladman, Simon , Hangartner, Sandra , Hayden, Helen , Ho, William , Keeble-Gagnère, Gabriel , Korhonen, Pasi , Neish, Peter , Prestes, Priscilla , Richardson, Mark , Watson-Haigh, Nathan , Wyres, Kelly , Young, Neil , Schneider, Maria
- Date: 2018
- Type: Text , Journal article
- Relation: F1000 Research Vol. 6, no. (2018), p. 1-28
- Full Text:
- Reviewed:
- Description: Throughout history, the life sciences have been revolutionised by technological advances; in our era this is manifested by advances in instrumentation for data generation, and consequently researchers now routinely handle large amounts of heterogeneous data in digital formats. The simultaneous transitions towards biology as a data science and towards a 'life cycle' view of research data pose new challenges. Researchers face a bewildering landscape of data management requirements, recommendations and regulations, without necessarily being able to access data management training or possessing a clear understanding of practical approaches that can assist in data management in their particular research domain. Here we provide an overview of best practice data life cycle approaches for researchers in the life sciences/bioinformatics space with a particular focus on 'omics' datasets and computer-based data processing and analysis. We discuss the different stages of the data life cycle and provide practical suggestions for useful tools and resources to improve data management practices. © 2018 Griffin PC et al.
DMD-associated dilated cardiomyopathy : genotypes, phenotypes, and phenocopies
- Johnson, Renee, Otway, Robyn, Chin, Ephrem, Horvat, Claire, Ohanian, Monique, Wilcox, Jon, Su, Zheng, Prestes, Priscilla, Smolnikov, Andrei, Soka, Magdalena, Guo, Guanglan, Rath, Emma, Chakravorty, Samya, Chrzanowski, Lukasz, Hayward, Christopher, Keogh, Anne, MacDonald, Peter, Giannoulatou, Eleni, Chang, Alex, Oates, Emily, Charchar, Fadi, Seidman, Jonathan, Seidman, Christine, Hegde, Madhuri, Fatkin, Diane
- Authors: Johnson, Renee , Otway, Robyn , Chin, Ephrem , Horvat, Claire , Ohanian, Monique , Wilcox, Jon , Su, Zheng , Prestes, Priscilla , Smolnikov, Andrei , Soka, Magdalena , Guo, Guanglan , Rath, Emma , Chakravorty, Samya , Chrzanowski, Lukasz , Hayward, Christopher , Keogh, Anne , MacDonald, Peter , Giannoulatou, Eleni , Chang, Alex , Oates, Emily , Charchar, Fadi , Seidman, Jonathan , Seidman, Christine , Hegde, Madhuri , Fatkin, Diane
- Date: 2023
- Type: Text , Journal article
- Relation: Circulation: Genomic and Precision Medicine Vol. 16, no. 5 (2023), p. 421-430
- Full Text:
- Reviewed:
- Description: Background: Variants in the DMD gene, that encodes the cytoskeletal protein, dystrophin, cause a severe form of dilated cardiomyopathy (DCM) associated with high rates of heart failure, heart transplantation, and ventricular arrhythmias. Improved early detection of individuals at risk is needed. Methods: Genetic testing of 40 male probands with a potential X-linked genetic cause of primary DCM was undertaken using multi-gene panel sequencing, multiplex polymerase chain reaction, and array comparative genomic hybridization. Variant location was assessed with respect to dystrophin isoform patterns and exon usage. Telomere length was evaluated as a marker of myocardial dysfunction in left ventricular tissue and blood. Results: Four pathogenic/likely pathogenic DMD variants were found in 5 probands (5/40: 12.5%). Only one rare variant was identified by gene panel testing with 3 additional multi-exon deletion/duplications found following targeted assays for structural variants. All of the pathogenic/likely pathogenic DMD variants involved dystrophin exons that had percent spliced-in scores >90, indicating high levels of constitutive expression in the human adult heart. Fifteen DMD variant-negative probands (15/40: 37.5%) had variants in autosomal genes including TTN, BAG3, LMNA, and RBM20. Myocardial telomere length was reduced in patients with DCM irrespective of genotype. No differences in blood telomere length were observed between genotype-positive family members with/without DCM and controls. Conclusions: Primary genetic testing using multi-gene panels has a low yield and specific assays for structural variants are required if DMD-associated cardiomyopathy is suspected. Distinguishing X-linked causes of DCM from autosomal genes that show sex differences in clinical presentation is crucial for informed family management. © 2023 American Heart Association, Inc.
- Authors: Johnson, Renee , Otway, Robyn , Chin, Ephrem , Horvat, Claire , Ohanian, Monique , Wilcox, Jon , Su, Zheng , Prestes, Priscilla , Smolnikov, Andrei , Soka, Magdalena , Guo, Guanglan , Rath, Emma , Chakravorty, Samya , Chrzanowski, Lukasz , Hayward, Christopher , Keogh, Anne , MacDonald, Peter , Giannoulatou, Eleni , Chang, Alex , Oates, Emily , Charchar, Fadi , Seidman, Jonathan , Seidman, Christine , Hegde, Madhuri , Fatkin, Diane
- Date: 2023
- Type: Text , Journal article
- Relation: Circulation: Genomic and Precision Medicine Vol. 16, no. 5 (2023), p. 421-430
- Full Text:
- Reviewed:
- Description: Background: Variants in the DMD gene, that encodes the cytoskeletal protein, dystrophin, cause a severe form of dilated cardiomyopathy (DCM) associated with high rates of heart failure, heart transplantation, and ventricular arrhythmias. Improved early detection of individuals at risk is needed. Methods: Genetic testing of 40 male probands with a potential X-linked genetic cause of primary DCM was undertaken using multi-gene panel sequencing, multiplex polymerase chain reaction, and array comparative genomic hybridization. Variant location was assessed with respect to dystrophin isoform patterns and exon usage. Telomere length was evaluated as a marker of myocardial dysfunction in left ventricular tissue and blood. Results: Four pathogenic/likely pathogenic DMD variants were found in 5 probands (5/40: 12.5%). Only one rare variant was identified by gene panel testing with 3 additional multi-exon deletion/duplications found following targeted assays for structural variants. All of the pathogenic/likely pathogenic DMD variants involved dystrophin exons that had percent spliced-in scores >90, indicating high levels of constitutive expression in the human adult heart. Fifteen DMD variant-negative probands (15/40: 37.5%) had variants in autosomal genes including TTN, BAG3, LMNA, and RBM20. Myocardial telomere length was reduced in patients with DCM irrespective of genotype. No differences in blood telomere length were observed between genotype-positive family members with/without DCM and controls. Conclusions: Primary genetic testing using multi-gene panels has a low yield and specific assays for structural variants are required if DMD-associated cardiomyopathy is suspected. Distinguishing X-linked causes of DCM from autosomal genes that show sex differences in clinical presentation is crucial for informed family management. © 2023 American Heart Association, Inc.
DNA copy number variations – Do these big mutations have a big effect on cardiovascular risk?
- Prestes, Priscilla, Maier, Michelle, Charchar, Fadi
- Authors: Prestes, Priscilla , Maier, Michelle , Charchar, Fadi
- Date: 2019
- Type: Text , Journal article , Editorial
- Relation: International Journal of Cardiology Vol. 298, no. (2019), p. 116-117
- Full Text:
- Reviewed:
- Description: In simple terms, copy number variations or CNVs are replications or deletions in the DNA which, in humans, changes it from the normal number of two gene copies. These CNVs are caused by inherited or de novo structural changes such as duplications, insertions or deletions of repeated portions of genetic material (Fig. 1). These duplications can vary from one to ten or more copies and range in size from 50 DNA base pairs to several million [1]. Since their discovery in 1987 by Nakamura et al. [2], when they were initially named variable number tandem repeats, many studies have investigated their association with rare and common human diseases. Throughout evolution, some of these changes in copy number were beneficial such as the globin gene number duplication, while others such as the CNVs that cause Huntington's disease were not. In 2004, two landmark studies by Iafrate et al. [3] and Sebat et al. [4] found that large-scale copy-number variations, ranging in size from 100 kb to 2 Mb are common throughout the human genome, and that a high proportion of them are in known genes. These findings roused several association studies between CNVs and disease
- Authors: Prestes, Priscilla , Maier, Michelle , Charchar, Fadi
- Date: 2019
- Type: Text , Journal article , Editorial
- Relation: International Journal of Cardiology Vol. 298, no. (2019), p. 116-117
- Full Text:
- Reviewed:
- Description: In simple terms, copy number variations or CNVs are replications or deletions in the DNA which, in humans, changes it from the normal number of two gene copies. These CNVs are caused by inherited or de novo structural changes such as duplications, insertions or deletions of repeated portions of genetic material (Fig. 1). These duplications can vary from one to ten or more copies and range in size from 50 DNA base pairs to several million [1]. Since their discovery in 1987 by Nakamura et al. [2], when they were initially named variable number tandem repeats, many studies have investigated their association with rare and common human diseases. Throughout evolution, some of these changes in copy number were beneficial such as the globin gene number duplication, while others such as the CNVs that cause Huntington's disease were not. In 2004, two landmark studies by Iafrate et al. [3] and Sebat et al. [4] found that large-scale copy-number variations, ranging in size from 100 kb to 2 Mb are common throughout the human genome, and that a high proportion of them are in known genes. These findings roused several association studies between CNVs and disease
- Marques, Francine, Prestes, Priscilla, Lewandowski, Paul, Harrap, Stephen, Charchar, Fadi
- Authors: Marques, Francine , Prestes, Priscilla , Lewandowski, Paul , Harrap, Stephen , Charchar, Fadi
- Date: 2015
- Type: Text , Conference paper
- Relation: Cardiac Society of Australia and New Zealand Annual Scientific Meeting and the International Society for Heart Research Australasian Section Annual Scientific Meeting; Melbourne, Victoria, Australia; 13th-16th August 2016; published in Heart, Lung and Circulation. Vol. 24, p. S401-S401
- Full Text: false
- Reviewed:
- Description: Objective: The molecular processes associated with cardiac hypertrophy independent of blood pressure are still largely unknown. The hypertrophic heart rate (HHR) is normotensive and born with a reduced complement of cardiomyocytes that predisposes to cardiac hypertrophy and failure in later life. We investigated the expression of c-kit gene, a marker of cardiac stem cells and myocardial regeneration that could contribute to hypertrophy. Methods: Left ventricular c-kit mRNA expression was measured by real-time PCR in HHR and control strain in neonatal and 38-week old rats (n=7-12/group). We tested for linkage of c-kit expression with neonatal cardiac size in 197 second generation crosses (F2) of HHR and control strain. Results: c-kit mRNA was slightly up-regulated in neonatal (fold change +1.3, P=0.02) and markedly so in 38-week old HHR (+35.5, P=0.0003). Cardiac weight index was positively correlated with neonatal myocardial c-kit mRNA in the F2 population (r=0.19, P=0.007). Conclusions: In HHR hearts c-kit expression appears increased throughout life, but more so in the adult where cardiac hypertrophy is established and leading to failure. In aged hypertrophic hearts, over-expression of c-kit is likely a compensatory mechanism of the failing heart. Previous studies showed an activation of cardiac stem cells in the hypertrophic myocardium. Our study suggests that c-kit might be involved from an early age in mechanisms that lead to cardiac hypertrophy in adulthood.
Experimental and human evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin NGAL ) in the development of cardiac hypertrophy and heart failure
- Marques, Francine, Prestes, Priscilla, Byars, Sean, Ritchie, Scott, Wurtz, Peter, Patel, Sheila, Booth, Scott, Rana, Indrajeetsinh, Minoda, Yosuke, Berzins, Stuart, Curl, Claire, Bell, James, Wai, Bryan, Srivastava, Piyush, Kangas, Antti, Soininen, Pasi, Ruohonen, Saku, Kahonen, Mika, Lehtimaki, Terho, Raitoharju, Emma, Havulinna, Aki, Perola, Markus, Raitakari, Olli, Salomaa, Veikko, Ala-Korpela, Mika, Kettunen, Johannes, McGlynn, Maree, Kelly, Jason, Wlodek, Mary, Lewandowski, Paul, Delbridge, Lea, Burrell, Louise, Inouye, Michael, Harrap, Stephen, Charchar, Fadi
- Authors: Marques, Francine , Prestes, Priscilla , Byars, Sean , Ritchie, Scott , Wurtz, Peter , Patel, Sheila , Booth, Scott , Rana, Indrajeetsinh , Minoda, Yosuke , Berzins, Stuart , Curl, Claire , Bell, James , Wai, Bryan , Srivastava, Piyush , Kangas, Antti , Soininen, Pasi , Ruohonen, Saku , Kahonen, Mika , Lehtimaki, Terho , Raitoharju, Emma , Havulinna, Aki , Perola, Markus , Raitakari, Olli , Salomaa, Veikko , Ala-Korpela, Mika , Kettunen, Johannes , McGlynn, Maree , Kelly, Jason , Wlodek, Mary , Lewandowski, Paul , Delbridge, Lea , Burrell, Louise , Inouye, Michael , Harrap, Stephen , Charchar, Fadi
- Date: 2017
- Type: Text , Journal article
- Relation: Journal of the American Heart Association Vol. 6, no. 6 (2017), p. 1-58
- Relation: http://purl.org/au-research/grants/nhmrc/1034371
- Full Text:
- Reviewed:
- Description: Background-Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. Methods and Results-We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2-knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2-knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis-eQTL for LCN2 expression. Conclusions-Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure.
- Authors: Marques, Francine , Prestes, Priscilla , Byars, Sean , Ritchie, Scott , Wurtz, Peter , Patel, Sheila , Booth, Scott , Rana, Indrajeetsinh , Minoda, Yosuke , Berzins, Stuart , Curl, Claire , Bell, James , Wai, Bryan , Srivastava, Piyush , Kangas, Antti , Soininen, Pasi , Ruohonen, Saku , Kahonen, Mika , Lehtimaki, Terho , Raitoharju, Emma , Havulinna, Aki , Perola, Markus , Raitakari, Olli , Salomaa, Veikko , Ala-Korpela, Mika , Kettunen, Johannes , McGlynn, Maree , Kelly, Jason , Wlodek, Mary , Lewandowski, Paul , Delbridge, Lea , Burrell, Louise , Inouye, Michael , Harrap, Stephen , Charchar, Fadi
- Date: 2017
- Type: Text , Journal article
- Relation: Journal of the American Heart Association Vol. 6, no. 6 (2017), p. 1-58
- Relation: http://purl.org/au-research/grants/nhmrc/1034371
- Full Text:
- Reviewed:
- Description: Background-Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. Methods and Results-We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2-knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2-knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis-eQTL for LCN2 expression. Conclusions-Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure.
Four-week inhibition of the renin-angiotensin system in spontaneously hypertensive rats results in persistently lower blood pressure with reduced kidney renin and changes in expression of relevant gene networks
- Byars, Sean, Prestes, Priscilla, Suphapimol, Varaporn, Takeuchi, Fumihiko, De Vries, Nathan, Maier, Michelle, Melo, Mariana, Balding, David, Samani, Nilesh, Allen, Andrew, Kato, Norihiro, Wilkinson-Berka, Jennifer, Charchar, Fadi, Harrap, Stephen
- Authors: Byars, Sean , Prestes, Priscilla , Suphapimol, Varaporn , Takeuchi, Fumihiko , De Vries, Nathan , Maier, Michelle , Melo, Mariana , Balding, David , Samani, Nilesh , Allen, Andrew , Kato, Norihiro , Wilkinson-Berka, Jennifer , Charchar, Fadi , Harrap, Stephen
- Date: 2024
- Type: Text , Journal article
- Relation: Cardiovascular Research Vol. 120, no. 7 (2024), p. 769-781
- Full Text:
- Reviewed:
- Description: Aims: Prevention of human hypertension is an important challenge and has been achieved in experimental models. Brief treatment with renin-angiotensin system (RAS) inhibitors permanently reduces the genetic hypertension of the spontaneously hypertensive rat (SHR). The kidney is involved in this fascinating phenomenon, but relevant changes in gene expression are unknown. Methods and results: In SHR, we studied the effect of treatment between 10 and 14 weeks of age with the angiotensin receptor blocker, losartan, or the angiotensin-converting enzyme inhibitor, perindopril [with controls for non-specific effects of lowering blood pressure (BP)], on differential RNA expression, DNA methylation, and renin immunolabelling in the kidney at 20 weeks of age. RNA sequencing revealed a six-fold increase in renin gene (Ren) expression during losartan treatment (P < 0.0001). Six weeks after losartan, arterial pressure remained lower (P = 0.006), yet kidney Ren showed reduced expression by 23% after losartan (P = 0.03) and by 43% after perindopril (P = 1.4 × 10-6) associated with increased DNA methylation (P = 0.04). Immunolabelling confirmed reduced cortical renin after earlier RAS blockade (P = 0.002). RNA sequencing identified differential expression of mRNAs, miRNAs, and lncRNAs with evidence of networking and co-regulation. These included 13 candidate genes (Grhl1, Ammecr1l, Hs6st1, Nfil3, Fam221a, Lmo4, Adamts1, Cish, Hif3a, Bcl6, Rad54l2, Adap1, Dok4), the miRNA miR-145-3p, and the lncRNA AC115371. Gene ontogeny analyses revealed that these networks were enriched with genes relevant to BP, RAS, and the kidneys. Conclusion: Early RAS inhibition in SHR resets genetic pathways and networks resulting in a legacy of reduced Ren expression and BP persisting for a minimum of 6 weeks. © 2024 The Author(s). Published by Oxford University Press on behalf of the European Society of Cardiology.
- Authors: Byars, Sean , Prestes, Priscilla , Suphapimol, Varaporn , Takeuchi, Fumihiko , De Vries, Nathan , Maier, Michelle , Melo, Mariana , Balding, David , Samani, Nilesh , Allen, Andrew , Kato, Norihiro , Wilkinson-Berka, Jennifer , Charchar, Fadi , Harrap, Stephen
- Date: 2024
- Type: Text , Journal article
- Relation: Cardiovascular Research Vol. 120, no. 7 (2024), p. 769-781
- Full Text:
- Reviewed:
- Description: Aims: Prevention of human hypertension is an important challenge and has been achieved in experimental models. Brief treatment with renin-angiotensin system (RAS) inhibitors permanently reduces the genetic hypertension of the spontaneously hypertensive rat (SHR). The kidney is involved in this fascinating phenomenon, but relevant changes in gene expression are unknown. Methods and results: In SHR, we studied the effect of treatment between 10 and 14 weeks of age with the angiotensin receptor blocker, losartan, or the angiotensin-converting enzyme inhibitor, perindopril [with controls for non-specific effects of lowering blood pressure (BP)], on differential RNA expression, DNA methylation, and renin immunolabelling in the kidney at 20 weeks of age. RNA sequencing revealed a six-fold increase in renin gene (Ren) expression during losartan treatment (P < 0.0001). Six weeks after losartan, arterial pressure remained lower (P = 0.006), yet kidney Ren showed reduced expression by 23% after losartan (P = 0.03) and by 43% after perindopril (P = 1.4 × 10-6) associated with increased DNA methylation (P = 0.04). Immunolabelling confirmed reduced cortical renin after earlier RAS blockade (P = 0.002). RNA sequencing identified differential expression of mRNAs, miRNAs, and lncRNAs with evidence of networking and co-regulation. These included 13 candidate genes (Grhl1, Ammecr1l, Hs6st1, Nfil3, Fam221a, Lmo4, Adamts1, Cish, Hif3a, Bcl6, Rad54l2, Adap1, Dok4), the miRNA miR-145-3p, and the lncRNA AC115371. Gene ontogeny analyses revealed that these networks were enriched with genes relevant to BP, RAS, and the kidneys. Conclusion: Early RAS inhibition in SHR resets genetic pathways and networks resulting in a legacy of reduced Ren expression and BP persisting for a minimum of 6 weeks. © 2024 The Author(s). Published by Oxford University Press on behalf of the European Society of Cardiology.
Genetic and epigenetic changes associated with polygenic left ventricular hypertrophy
- Authors: Prestes, Priscilla
- Date: 2021
- Type: Text , Thesis , PhD
- Full Text:
- Description: Cardiac hypertrophy (CH) is the thickening of heart muscles reducing functionality and increasing risk of cardiac disease. Commonly, pathological CH is presented as left ventricular hypertrophy (LVH) and genetic factors are known to be involved but their contribution is still poorly understood. I used the hypertrophic heart rat (HHR), a unique normotensive polygenic model of LVH, and its control strain, the normal heart rat (NHR) to investigate genetic and epigenetic contributions to LVH independent of high blood pressure. To address this study, I used a systematic approach. Firstly, I sequenced the whole genome of HHR and NHR to identify genes related to LVH, focusing on quantitative trait locus Cm22. I found the gene for tripartite motif-containing 55 (Trim55) was significantly downregulated and also presented decreased protein expression with the presence of one exonic missense mutation that altered the protein structure. Interestingly, Trim55 mRNA expression was reduced in idiopathic dilated cardiomyopathic hearts. Secondly, I selected 42 genes previously described in monogenic forms of human cardiomyopathies and studied DNA variants, mRNA and micro RNA (miRNA) expression to determine their involvement in this polygenic model of LVH at five ages. This comprehensive approach identified the differential expression of 29 genes in at least one age group and two miRNAs in validated miRNA-mRNA interactions. These two miRNAs have binding sites for five of the genes studied. Lastly, I found circular RNA (circRNA) Hrcr was upregulated in the hypertrophic heart. I then silenced Hrcr expression in human primary cardiomyocytes to investigate its miRNA downstream targets and elucidate possible regulatory mechanisms. I described four miRNAs (miR-1-3p, miR-330, miR-27a-5p, miR-299-5p) as novel targets for HRCR and predicted 359 mRNA targets in the circRNA-miRNA-mRNA regulatory axis. In silico analysis identified 206 enriched gene ontology based on the predicted mRNA target list, including cardiomyocyte differentiation and ventricular cardiac muscle cell differentiation. The findings in this thesis suggest that 1) Trim55 is a novel functional candidate gene for polygenic LVH; 2) genes implicated in monogenic forms of cardiomyopathy may be involved in this condition and 3) circRNA expression is associated with changes in hypertrophic hearts and deserve further attention.
- Description: Doctor of Philosophy
- Authors: Prestes, Priscilla
- Date: 2021
- Type: Text , Thesis , PhD
- Full Text:
- Description: Cardiac hypertrophy (CH) is the thickening of heart muscles reducing functionality and increasing risk of cardiac disease. Commonly, pathological CH is presented as left ventricular hypertrophy (LVH) and genetic factors are known to be involved but their contribution is still poorly understood. I used the hypertrophic heart rat (HHR), a unique normotensive polygenic model of LVH, and its control strain, the normal heart rat (NHR) to investigate genetic and epigenetic contributions to LVH independent of high blood pressure. To address this study, I used a systematic approach. Firstly, I sequenced the whole genome of HHR and NHR to identify genes related to LVH, focusing on quantitative trait locus Cm22. I found the gene for tripartite motif-containing 55 (Trim55) was significantly downregulated and also presented decreased protein expression with the presence of one exonic missense mutation that altered the protein structure. Interestingly, Trim55 mRNA expression was reduced in idiopathic dilated cardiomyopathic hearts. Secondly, I selected 42 genes previously described in monogenic forms of human cardiomyopathies and studied DNA variants, mRNA and micro RNA (miRNA) expression to determine their involvement in this polygenic model of LVH at five ages. This comprehensive approach identified the differential expression of 29 genes in at least one age group and two miRNAs in validated miRNA-mRNA interactions. These two miRNAs have binding sites for five of the genes studied. Lastly, I found circular RNA (circRNA) Hrcr was upregulated in the hypertrophic heart. I then silenced Hrcr expression in human primary cardiomyocytes to investigate its miRNA downstream targets and elucidate possible regulatory mechanisms. I described four miRNAs (miR-1-3p, miR-330, miR-27a-5p, miR-299-5p) as novel targets for HRCR and predicted 359 mRNA targets in the circRNA-miRNA-mRNA regulatory axis. In silico analysis identified 206 enriched gene ontology based on the predicted mRNA target list, including cardiomyocyte differentiation and ventricular cardiac muscle cell differentiation. The findings in this thesis suggest that 1) Trim55 is a novel functional candidate gene for polygenic LVH; 2) genes implicated in monogenic forms of cardiomyopathy may be involved in this condition and 3) circRNA expression is associated with changes in hypertrophic hearts and deserve further attention.
- Description: Doctor of Philosophy
Human Y Chromosome Exerts Pleiotropic Effects on Susceptibility to Atherosclerosis
- Eales, James, Maan, Akhlaq, Xu, Xiaoguang, Michoel, Tom, Hallast, Pille, Batini, C, Zadik, Daniel, Prestes, Priscilla, Molina, Elsa, Denniff, Matthew, Schroeder, Juliane, Bjorkegren, Johan, Thompson, John, Maffia, Pasquale, Guzik, Tomasz, Keavney, Bernard, Jobling, Mark, Samani, Nilesh, Charchar, Fadi, Tomaszewski, Maciej
- Authors: Eales, James , Maan, Akhlaq , Xu, Xiaoguang , Michoel, Tom , Hallast, Pille , Batini, C , Zadik, Daniel , Prestes, Priscilla , Molina, Elsa , Denniff, Matthew , Schroeder, Juliane , Bjorkegren, Johan , Thompson, John , Maffia, Pasquale , Guzik, Tomasz , Keavney, Bernard , Jobling, Mark , Samani, Nilesh , Charchar, Fadi , Tomaszewski, Maciej
- Date: 2019
- Type: Text , Journal article
- Relation: Arteriosclerosis, thrombosis, and vascular biology Vol. 39, no. 11 (2019), p. 2386-2401
- Full Text:
- Reviewed:
- Description: OBJECTIVE: The male-specific region of the Y chromosome (MSY) remains one of the most unexplored regions of the genome. We sought to examine how the genetic variants of the MSY influence male susceptibility to coronary artery disease (CAD) and atherosclerosis. Approach and Results: Analysis of 129 133 men from UK Biobank revealed that only one of 7 common MSY haplogroups (haplogroup I1) was associated with CAD-carriers of haplogroup I1 had ≈11% increase in risk of CAD when compared with all other haplogroups combined (odds ratio, 1.11; 95% CI, 1.04-1.18; P=6.8×10-4). Targeted MSY sequencing uncovered 235 variants exclusive to this haplogroup. The haplogroup I1-specific variants showed 2.45- and 1.56-fold respective enrichment for promoter and enhancer chromatin states, in cells/tissues relevant to atherosclerosis, when compared with other MSY variants. Gene set enrichment analysis in CAD-relevant tissues showed that haplogroup I1 was associated with changes in pathways responsible for early and late stages of atherosclerosis development including defence against pathogens, immunity, oxidative phosphorylation, mitochondrial respiration, lipids, coagulation, and extracellular matrix remodeling. UTY was the only Y chromosome gene whose blood expression was associated with haplogroup I1. Experimental reduction of UTY expression in macrophages led to changes in expression of 59 pathways (28 of which overlapped with those associated with haplogroup I1) and a significant reduction in the immune costimulatory signal. CONCLUSIONS: Haplogroup I1 is enriched for regulatory chromatin variants in numerous cells of relevance to CAD and increases cardiovascular risk through proatherosclerotic reprogramming of the transcriptome, partly through UTY.
- Authors: Eales, James , Maan, Akhlaq , Xu, Xiaoguang , Michoel, Tom , Hallast, Pille , Batini, C , Zadik, Daniel , Prestes, Priscilla , Molina, Elsa , Denniff, Matthew , Schroeder, Juliane , Bjorkegren, Johan , Thompson, John , Maffia, Pasquale , Guzik, Tomasz , Keavney, Bernard , Jobling, Mark , Samani, Nilesh , Charchar, Fadi , Tomaszewski, Maciej
- Date: 2019
- Type: Text , Journal article
- Relation: Arteriosclerosis, thrombosis, and vascular biology Vol. 39, no. 11 (2019), p. 2386-2401
- Full Text:
- Reviewed:
- Description: OBJECTIVE: The male-specific region of the Y chromosome (MSY) remains one of the most unexplored regions of the genome. We sought to examine how the genetic variants of the MSY influence male susceptibility to coronary artery disease (CAD) and atherosclerosis. Approach and Results: Analysis of 129 133 men from UK Biobank revealed that only one of 7 common MSY haplogroups (haplogroup I1) was associated with CAD-carriers of haplogroup I1 had ≈11% increase in risk of CAD when compared with all other haplogroups combined (odds ratio, 1.11; 95% CI, 1.04-1.18; P=6.8×10-4). Targeted MSY sequencing uncovered 235 variants exclusive to this haplogroup. The haplogroup I1-specific variants showed 2.45- and 1.56-fold respective enrichment for promoter and enhancer chromatin states, in cells/tissues relevant to atherosclerosis, when compared with other MSY variants. Gene set enrichment analysis in CAD-relevant tissues showed that haplogroup I1 was associated with changes in pathways responsible for early and late stages of atherosclerosis development including defence against pathogens, immunity, oxidative phosphorylation, mitochondrial respiration, lipids, coagulation, and extracellular matrix remodeling. UTY was the only Y chromosome gene whose blood expression was associated with haplogroup I1. Experimental reduction of UTY expression in macrophages led to changes in expression of 59 pathways (28 of which overlapped with those associated with haplogroup I1) and a significant reduction in the immune costimulatory signal. CONCLUSIONS: Haplogroup I1 is enriched for regulatory chromatin variants in numerous cells of relevance to CAD and increases cardiovascular risk through proatherosclerotic reprogramming of the transcriptome, partly through UTY.
Hypertension and renin-angiotensin system blockers are not associated with expression of angiotensin-converting enzyme 2 (ACE2) in the kidney
- Jiang, Xiao, Eales, James, Scannali, David, Prestes, Priscilla, Charchar, Fadi
- Authors: Jiang, Xiao , Eales, James , Scannali, David , Prestes, Priscilla , Charchar, Fadi
- Date: 2020
- Type: Text , Journal article
- Relation: European Heart Journal Vol. 41, no. 48 (2020), p. 4580-4588
- Full Text:
- Reviewed:
- Description: Aims Angiotensin-converting enzyme 2 (ACE2) is the cellular entry point for severe acute respiratory syndrome coronavirus (SARS-CoV-2) - the cause of coronavirus disease 2019 (COVID-19). However, the effect of renin-angiotensin system (RAS)-inhibition on ACE2 expression in human tissues of key relevance to blood pressure regulation and COVID-19 infection has not previously been reported. Methods and results We examined how hypertension, its major metabolic co-phenotypes, and antihypertensive medications relate to ACE2 renal expression using information from up to 436 patients whose kidney transcriptomes were characterized by RNA-sequencing. We further validated some of the key observations in other human tissues and/or a controlled experimental model. Our data reveal increasing expression of ACE2 with age in both human lungs and the kidney. We show no association between renal expression of ACE2 and either hypertension or common types of RAS inhibiting drugs. We demonstrate that renal abundance of ACE2 is positively associated with a biochemical index of kidney function and show a strong enrichment for genes responsible for kidney health and disease in ACE2 coexpression analysis. Conclusion Our results indicate that neither hypertension nor antihypertensive treatment is likely to alter the expression of the key entry receptor for SARS-CoV-2 in the human kidney. Our data further suggest that in the absence of SARS-CoV-2 infection, kidney ACE2 is most likely nephro-protective but the age-related increase in its expression within lungs and kidneys may be relevant to the risk of SARS-CoV-2 infection. © The Author(s) 2020. *Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliates “James Eales", "Priscilla Prestes" and "Fadi Charchar” are provided in this record**
- Authors: Jiang, Xiao , Eales, James , Scannali, David , Prestes, Priscilla , Charchar, Fadi
- Date: 2020
- Type: Text , Journal article
- Relation: European Heart Journal Vol. 41, no. 48 (2020), p. 4580-4588
- Full Text:
- Reviewed:
- Description: Aims Angiotensin-converting enzyme 2 (ACE2) is the cellular entry point for severe acute respiratory syndrome coronavirus (SARS-CoV-2) - the cause of coronavirus disease 2019 (COVID-19). However, the effect of renin-angiotensin system (RAS)-inhibition on ACE2 expression in human tissues of key relevance to blood pressure regulation and COVID-19 infection has not previously been reported. Methods and results We examined how hypertension, its major metabolic co-phenotypes, and antihypertensive medications relate to ACE2 renal expression using information from up to 436 patients whose kidney transcriptomes were characterized by RNA-sequencing. We further validated some of the key observations in other human tissues and/or a controlled experimental model. Our data reveal increasing expression of ACE2 with age in both human lungs and the kidney. We show no association between renal expression of ACE2 and either hypertension or common types of RAS inhibiting drugs. We demonstrate that renal abundance of ACE2 is positively associated with a biochemical index of kidney function and show a strong enrichment for genes responsible for kidney health and disease in ACE2 coexpression analysis. Conclusion Our results indicate that neither hypertension nor antihypertensive treatment is likely to alter the expression of the key entry receptor for SARS-CoV-2 in the human kidney. Our data further suggest that in the absence of SARS-CoV-2 infection, kidney ACE2 is most likely nephro-protective but the age-related increase in its expression within lungs and kidneys may be relevant to the risk of SARS-CoV-2 infection. © The Author(s) 2020. *Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliates “James Eales", "Priscilla Prestes" and "Fadi Charchar” are provided in this record**
Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres
- Denham, Joshua, O'Brien, Brendan, Prestes, Priscilla, Brown, Nicholas, Charchar, Fadi
- Authors: Denham, Joshua , O'Brien, Brendan , Prestes, Priscilla , Brown, Nicholas , Charchar, Fadi
- Date: 2015
- Type: Text , Journal article
- Relation: Journal of Applied Physiology Vol. 120, no. 2 (2015), p. 148-158
- Relation: http://purl.org/au-research/grants/nhmrc/1009490
- Full Text:
- Reviewed:
- Description: Leukocyte telomeres shorten with age, and excessive shortening is associated with age-related cardiometabolic diseases. Exercise training may prevent disease through telomere length maintenance although the optimal amount of exercise that attenuates telomere attrition is unknown. Furthermore, the underlying molecular mechanisms responsible for the enhanced telomere maintenance observed in endurance athletes is poorly understood. We quantified the leukocyte telomere length and analyzed the expression of telomere-regulating genes in endurance athletes and healthy controls (both n = 61), using quantitative PCR. We found endurance athletes have significantly longer (7.1%, 208-416 nt) leukocyte telomeres and upregulated TERT (2.0-fold) and TPP1 (1.3-fold) mRNA expression compared with controls in age-adjusted analysis. The telomere length and telomere-regulating gene expression differences were no longer statistically significant after adjustment for resting heart rate and relative (V) over dotO(2 max) (all P > 0.05). Resting heart rate emerged as an independent predictor of leukocyte telomere length and TERT and TPP1 mRNA expression in stepwise regression models. To gauge whether volume of exercise was associated with leukocyte telomere length, we divided subjects into running and cycling tertiles (distance covered per week) and found individuals in the middle and highest tertiles had longer telomeres than individuals in the lowest tertile. These data emphasize the importance of cardiorespiratory fitness and exercise training in the prevention of biological aging. They also support the concept that moderate amounts of exercise training protects against biological aging, while higher amounts may not elicit additional benefits.
- Authors: Denham, Joshua , O'Brien, Brendan , Prestes, Priscilla , Brown, Nicholas , Charchar, Fadi
- Date: 2015
- Type: Text , Journal article
- Relation: Journal of Applied Physiology Vol. 120, no. 2 (2015), p. 148-158
- Relation: http://purl.org/au-research/grants/nhmrc/1009490
- Full Text:
- Reviewed:
- Description: Leukocyte telomeres shorten with age, and excessive shortening is associated with age-related cardiometabolic diseases. Exercise training may prevent disease through telomere length maintenance although the optimal amount of exercise that attenuates telomere attrition is unknown. Furthermore, the underlying molecular mechanisms responsible for the enhanced telomere maintenance observed in endurance athletes is poorly understood. We quantified the leukocyte telomere length and analyzed the expression of telomere-regulating genes in endurance athletes and healthy controls (both n = 61), using quantitative PCR. We found endurance athletes have significantly longer (7.1%, 208-416 nt) leukocyte telomeres and upregulated TERT (2.0-fold) and TPP1 (1.3-fold) mRNA expression compared with controls in age-adjusted analysis. The telomere length and telomere-regulating gene expression differences were no longer statistically significant after adjustment for resting heart rate and relative (V) over dotO(2 max) (all P > 0.05). Resting heart rate emerged as an independent predictor of leukocyte telomere length and TERT and TPP1 mRNA expression in stepwise regression models. To gauge whether volume of exercise was associated with leukocyte telomere length, we divided subjects into running and cycling tertiles (distance covered per week) and found individuals in the middle and highest tertiles had longer telomeres than individuals in the lowest tertile. These data emphasize the importance of cardiorespiratory fitness and exercise training in the prevention of biological aging. They also support the concept that moderate amounts of exercise training protects against biological aging, while higher amounts may not elicit additional benefits.
Involvement of human monogenic cardiomyopathy genes in experimental polygenic cardiac hypertrophy
- Prestes, Priscilla, Marques, Francine, Lopez-Campos, Guillermo, Lewandowski, Paul, Delbridge, Lea, Charchar, Fadi, Harrap, Stephen
- Authors: Prestes, Priscilla , Marques, Francine , Lopez-Campos, Guillermo , Lewandowski, Paul , Delbridge, Lea , Charchar, Fadi , Harrap, Stephen
- Date: 2018
- Type: Text , Journal article
- Relation: Physiological Genomics Vol. 50, no. 9 (2018), p. 680-687
- Full Text:
- Reviewed:
- Description: Hypertrophic cardiomyopathy thickens heart muscles, reducing functionality and increasing risk of cardiac disease and morbidity. Genetic factors are involved, but their contribution is poorly understood. We used the hypertrophic heart rat (HHR), a unique normotensive polygenic model of cardiac hypertrophy and heart failure, to investigate the role of genes associated with monogenic human cardiomyopathy. We selected 42 genes involved in monogenic human cardiomyopathies to study: 1) DNA variants, by sequencing the whole genome of 13-wk-old HHR and age-matched normal heart rat (NHR), its genetic control strain; 2) mRNA expression, by targeted RNA-sequencing in left ventricles of HHR and NHR at 5 ages (2 days old and 4, 13, 33, and 50 wk old) compared with human idiopathic dilated cardiomyopathy data; and 3) microRNA expression, with rat microRNA microarrays in left ventricles of 2-day-old HHR and age-matched NHR. We also investigated experimentally validated microRNA-mRNA interactions. Whole-genome sequencing revealed unique variants mostly located in noncoding regions of HHR and NHR. We found 29 genes differentially expressed in at least 1 age. Genes encoding desmoglein 2 (Dsg2) and transthyretin (Ttr) were significantly differentially expressed at all ages in the HHR, but only Ttr was also differentially expressed in human idiopathic cardiomyopathy. Lastly, only two microRNAs differentially expressed in the HHR were present in our comparison of validated microRNA-mRNA interactions. These two microRNAs interact with five of the genes studied. Our study shows that genes involved in monogenic forms of human cardiomyopathies may also influence polygenic forms of the disease.
- Authors: Prestes, Priscilla , Marques, Francine , Lopez-Campos, Guillermo , Lewandowski, Paul , Delbridge, Lea , Charchar, Fadi , Harrap, Stephen
- Date: 2018
- Type: Text , Journal article
- Relation: Physiological Genomics Vol. 50, no. 9 (2018), p. 680-687
- Full Text:
- Reviewed:
- Description: Hypertrophic cardiomyopathy thickens heart muscles, reducing functionality and increasing risk of cardiac disease and morbidity. Genetic factors are involved, but their contribution is poorly understood. We used the hypertrophic heart rat (HHR), a unique normotensive polygenic model of cardiac hypertrophy and heart failure, to investigate the role of genes associated with monogenic human cardiomyopathy. We selected 42 genes involved in monogenic human cardiomyopathies to study: 1) DNA variants, by sequencing the whole genome of 13-wk-old HHR and age-matched normal heart rat (NHR), its genetic control strain; 2) mRNA expression, by targeted RNA-sequencing in left ventricles of HHR and NHR at 5 ages (2 days old and 4, 13, 33, and 50 wk old) compared with human idiopathic dilated cardiomyopathy data; and 3) microRNA expression, with rat microRNA microarrays in left ventricles of 2-day-old HHR and age-matched NHR. We also investigated experimentally validated microRNA-mRNA interactions. Whole-genome sequencing revealed unique variants mostly located in noncoding regions of HHR and NHR. We found 29 genes differentially expressed in at least 1 age. Genes encoding desmoglein 2 (Dsg2) and transthyretin (Ttr) were significantly differentially expressed at all ages in the HHR, but only Ttr was also differentially expressed in human idiopathic cardiomyopathy. Lastly, only two microRNAs differentially expressed in the HHR were present in our comparison of validated microRNA-mRNA interactions. These two microRNAs interact with five of the genes studied. Our study shows that genes involved in monogenic forms of human cardiomyopathies may also influence polygenic forms of the disease.
Lifestyle management of hypertension : International Society of Hypertension position paper endorsed by the World Hypertension League and European Society of Hypertension
- Charchar, Fadi, Prestes, Priscilla, Mills, Charlotte, Ching, Siew, Neupane, Dinesh, Marques, Francine, Sharman, James, Vogt, Liffert, Burrell, Louise, Korostovtseva, Lyudmila, Zec, Manja, Patil, Mansi, Schultz, Martin, Wallen, Matthew, Renna, Nicolás, Islam, Sheikh, Hiremath, Swapnil, Gyeltshen, Tshewang, Chia, Yook-Chin, Gupta, Abhinav, Schutte, Aletta, Klein, Britt, Borghi, Claudio, Browning, Colette, Czesnikiewicz-Guzik, Marta, Lee, Hae-Young, Itoh, Hiroshi, Miura, Katsuyuki, Akinnibosun, Olutope, Thomas, Shane
- Authors: Charchar, Fadi , Prestes, Priscilla , Mills, Charlotte , Ching, Siew , Neupane, Dinesh , Marques, Francine , Sharman, James , Vogt, Liffert , Burrell, Louise , Korostovtseva, Lyudmila , Zec, Manja , Patil, Mansi , Schultz, Martin , Wallen, Matthew , Renna, Nicolás , Islam, Sheikh , Hiremath, Swapnil , Gyeltshen, Tshewang , Chia, Yook-Chin , Gupta, Abhinav , Schutte, Aletta , Klein, Britt , Borghi, Claudio , Browning, Colette , Czesnikiewicz-Guzik, Marta , Lee, Hae-Young , Itoh, Hiroshi , Miura, Katsuyuki , Akinnibosun, Olutope , Thomas, Shane
- Date: 2024
- Type: Text , Journal article
- Relation: Journal of hypertension Vol. 42, no. 1 (2024), p. 23-49
- Full Text:
- Reviewed:
- Description: Hypertension, defined as persistently elevated systolic blood pressure (SBP) >140 mmHg and/or diastolic blood pressure (DBP) at least 90 mmHg (International Society of Hypertension guidelines), affects over 1.5 billion people worldwide. Hypertension is associated with increased risk of cardiovascular disease (CVD) events (e.g. coronary heart disease, heart failure and stroke) and death. An international panel of experts convened by the International Society of Hypertension College of Experts compiled lifestyle management recommendations as first-line strategy to prevent and control hypertension in adulthood. We also recommend that lifestyle changes be continued even when blood pressure-lowering medications are prescribed. Specific recommendations based on literature evidence are summarized with advice to start these measures early in life, including maintaining a healthy body weight, increased levels of different types of physical activity, healthy eating and drinking, avoidance and cessation of smoking and alcohol use, management of stress and sleep levels. We also discuss the relevance of specific approaches including consumption of sodium, potassium, sugar, fibre, coffee, tea, intermittent fasting as well as integrated strategies to implement these recommendations using, for example, behaviour change-related technologies and digital tools. **Please note that there are multiple authors for this article therefore only the name of the first 30 including Federation University Australia affiliates “Fadi Charchar, Priscilla Prestes, Britt Klein, Colette Browning, Olutope Akinnibosun and Shane Thomas” are provided in this record**
- Description: Hypertension, defined as persistently elevated systolic blood pressure (SBP) >140 mmHg and/or diastolic blood pressure (DBP) at least 90 mmHg (International Society of Hypertension guidelines), affects over 1.5 billion people worldwide. Hypertension is associated with increased risk of cardiovascular disease (CVD) events (e.g. coronary heart disease, heart failure and stroke) and death. An international panel of experts convened by the International Society of Hypertension College of Experts compiled lifestyle management recommendations as first-line strategy to prevent and control hypertension in adulthood. We also recommend that lifestyle changes be continued even when blood pressure-lowering medications are prescribed. Specific recommendations based on literature evidence are summarized with advice to start these measures early in life, including maintaining a healthy body weight, increased levels of different types of physical activity, healthy eating and drinking, avoidance and cessation of smoking and alcohol use, management of stress and sleep levels. We also discuss the relevance of specific approaches including consumption of sodium, potassium, sugar, fibre, coffee, tea, intermittent fasting as well as integrated strategies to implement these recommendations using, for example, behaviour change-related technologies and digital tools. **Please note that there are multiple authors for this article therefore only the name of the first 30 including Federation University Australia affiliates “Fadi Charchar, Priscilla Prestes, Britt Klein, Colette Browning, Olutope Akinnibossun and Shane Thomas” are provided in this record**
- Authors: Charchar, Fadi , Prestes, Priscilla , Mills, Charlotte , Ching, Siew , Neupane, Dinesh , Marques, Francine , Sharman, James , Vogt, Liffert , Burrell, Louise , Korostovtseva, Lyudmila , Zec, Manja , Patil, Mansi , Schultz, Martin , Wallen, Matthew , Renna, Nicolás , Islam, Sheikh , Hiremath, Swapnil , Gyeltshen, Tshewang , Chia, Yook-Chin , Gupta, Abhinav , Schutte, Aletta , Klein, Britt , Borghi, Claudio , Browning, Colette , Czesnikiewicz-Guzik, Marta , Lee, Hae-Young , Itoh, Hiroshi , Miura, Katsuyuki , Akinnibosun, Olutope , Thomas, Shane
- Date: 2024
- Type: Text , Journal article
- Relation: Journal of hypertension Vol. 42, no. 1 (2024), p. 23-49
- Full Text:
- Reviewed:
- Description: Hypertension, defined as persistently elevated systolic blood pressure (SBP) >140 mmHg and/or diastolic blood pressure (DBP) at least 90 mmHg (International Society of Hypertension guidelines), affects over 1.5 billion people worldwide. Hypertension is associated with increased risk of cardiovascular disease (CVD) events (e.g. coronary heart disease, heart failure and stroke) and death. An international panel of experts convened by the International Society of Hypertension College of Experts compiled lifestyle management recommendations as first-line strategy to prevent and control hypertension in adulthood. We also recommend that lifestyle changes be continued even when blood pressure-lowering medications are prescribed. Specific recommendations based on literature evidence are summarized with advice to start these measures early in life, including maintaining a healthy body weight, increased levels of different types of physical activity, healthy eating and drinking, avoidance and cessation of smoking and alcohol use, management of stress and sleep levels. We also discuss the relevance of specific approaches including consumption of sodium, potassium, sugar, fibre, coffee, tea, intermittent fasting as well as integrated strategies to implement these recommendations using, for example, behaviour change-related technologies and digital tools. **Please note that there are multiple authors for this article therefore only the name of the first 30 including Federation University Australia affiliates “Fadi Charchar, Priscilla Prestes, Britt Klein, Colette Browning, Olutope Akinnibosun and Shane Thomas” are provided in this record**
- Description: Hypertension, defined as persistently elevated systolic blood pressure (SBP) >140 mmHg and/or diastolic blood pressure (DBP) at least 90 mmHg (International Society of Hypertension guidelines), affects over 1.5 billion people worldwide. Hypertension is associated with increased risk of cardiovascular disease (CVD) events (e.g. coronary heart disease, heart failure and stroke) and death. An international panel of experts convened by the International Society of Hypertension College of Experts compiled lifestyle management recommendations as first-line strategy to prevent and control hypertension in adulthood. We also recommend that lifestyle changes be continued even when blood pressure-lowering medications are prescribed. Specific recommendations based on literature evidence are summarized with advice to start these measures early in life, including maintaining a healthy body weight, increased levels of different types of physical activity, healthy eating and drinking, avoidance and cessation of smoking and alcohol use, management of stress and sleep levels. We also discuss the relevance of specific approaches including consumption of sodium, potassium, sugar, fibre, coffee, tea, intermittent fasting as well as integrated strategies to implement these recommendations using, for example, behaviour change-related technologies and digital tools. **Please note that there are multiple authors for this article therefore only the name of the first 30 including Federation University Australia affiliates “Fadi Charchar, Priscilla Prestes, Britt Klein, Colette Browning, Olutope Akinnibossun and Shane Thomas” are provided in this record**
Measurement of absolute copy number variation reveals association with essential hypertension
- Marques, Francine, Prestes, Priscilla, Pinheiro, Leonardo, Scurrah, Katrina, Emslie, Kerry, Tomaszewski, Maciej, Harrap, Stephen, Charchar, Fadi
- Authors: Marques, Francine , Prestes, Priscilla , Pinheiro, Leonardo , Scurrah, Katrina , Emslie, Kerry , Tomaszewski, Maciej , Harrap, Stephen , Charchar, Fadi
- Date: 2014
- Type: Text , Journal article
- Relation: BMC Medical Genomics Vol. 7, no. (2014), p. 1-8
- Full Text:
- Reviewed:
- Description: Background: The role of copy number variation (CNV) has been poorly explored in essential hypertension in part due to technical difficulties in accurately assessing absolute numbers of DNA copies. Droplet digital PCR (ddPCR) provides a powerful new approach to CNV quantitation. The aim of our study was to investigate whether CNVs located in regions previously associated with blood pressure (BP) variation in genome-wide association studies (GWAS) were associated with essential hypertension by the use of ddPCR. Methods: Using a "power of extreme" approach, we quantified nucleic acids using ddPCR in white subjects from the Victorian Family Heart Study with extremely high (n = 96) and low (n = 92) SBP, providing power equivalent to 1714 subjects selected at random. Results: A deletion of the CNVs esv27061 and esv2757747 on chromosome 1p13.2 was significantly more prevalent in extreme high BP subjects after adjustment for age, body mass index and sex (12.6% vs. 2.2%; P = 0.013). Conclusions: Our data suggests that CNVs within regions identified in previous GWAS may play a role in human essential hypertension.
- Authors: Marques, Francine , Prestes, Priscilla , Pinheiro, Leonardo , Scurrah, Katrina , Emslie, Kerry , Tomaszewski, Maciej , Harrap, Stephen , Charchar, Fadi
- Date: 2014
- Type: Text , Journal article
- Relation: BMC Medical Genomics Vol. 7, no. (2014), p. 1-8
- Full Text:
- Reviewed:
- Description: Background: The role of copy number variation (CNV) has been poorly explored in essential hypertension in part due to technical difficulties in accurately assessing absolute numbers of DNA copies. Droplet digital PCR (ddPCR) provides a powerful new approach to CNV quantitation. The aim of our study was to investigate whether CNVs located in regions previously associated with blood pressure (BP) variation in genome-wide association studies (GWAS) were associated with essential hypertension by the use of ddPCR. Methods: Using a "power of extreme" approach, we quantified nucleic acids using ddPCR in white subjects from the Victorian Family Heart Study with extremely high (n = 96) and low (n = 92) SBP, providing power equivalent to 1714 subjects selected at random. Results: A deletion of the CNVs esv27061 and esv2757747 on chromosome 1p13.2 was significantly more prevalent in extreme high BP subjects after adjustment for age, body mass index and sex (12.6% vs. 2.2%; P = 0.013). Conclusions: Our data suggests that CNVs within regions identified in previous GWAS may play a role in human essential hypertension.
- Booth, Scott, Marques, Francine, Prestes, Priscilla, Curl, Claire, Delbridge, Lea, Lewandowski, Paul, Harrap, Stephen, Charchar, Fadi
- Authors: Booth, Scott , Marques, Francine , Prestes, Priscilla , Curl, Claire , Delbridge, Lea , Lewandowski, Paul , Harrap, Stephen , Charchar, Fadi
- Date: 2015
- Type: Text , Journal article
- Relation: Heart, Lung and Circulation Vol. 24, no. S3 (2015), p. S180-S181
- Full Text: false
- Reviewed:
- Description: Cardiac hypertrophy is one of the main risk factors forheart failure. Here we aimed to investigate whether cardiactelomere length contributes to polygenic cardiac hypertro-phy independent of blood pressure. We also investigatedwhether changes in telomere length were due to the telomereregulators microRNA-34a,Ppp1r10(also known asPnuts)and telomerase. We used the hypertrophic heart rat (HHR),a normotensive model of polygenetic cardiac hypertrophy,and compared it to age-matched controls. Telomere length, microRNA levels, gene expression and telomerase activitywere measured in isolated cardiomyocytes and left ventricletissue using real-time PCR. Telomere length was significantlylonger in 2-day and 38-week-old HHR, but shorter at 4-and 13-week HHR. In the HHR, telomere length becameshorter early in development, while in the control straintelomere shortening was only observed in late adulthood.Telomere length was the main determinant of cardiac mass.
Molecular insights into genome-wide association studies of chronic kidney disease-defining traits
- Xu, Xiaoguang, Eales, James, Akbarov, Artur, Guo, Hui, Becker, Lorenz, Talavera, David, Ashraf, Fehzan, Nawaz, Jabran, Pramanik, Sanjeev, Bowes, John, Jiang, Xiao, Dormer, John, Denniff, Matthew, Antczak, Andrzej, Szulinska, Monika, Wise, Ingrid, Prestes, Priscilla, Glyda, Maciej, Bogdanski, Pawel, Zukowska-Szczechowska, Ewa, Berzuini, Carlo, Woolf, Adrian, Samani, Nilesh, Charchar, Fadi, Tomaszewski, Maciej
- Authors: Xu, Xiaoguang , Eales, James , Akbarov, Artur , Guo, Hui , Becker, Lorenz , Talavera, David , Ashraf, Fehzan , Nawaz, Jabran , Pramanik, Sanjeev , Bowes, John , Jiang, Xiao , Dormer, John , Denniff, Matthew , Antczak, Andrzej , Szulinska, Monika , Wise, Ingrid , Prestes, Priscilla , Glyda, Maciej , Bogdanski, Pawel , Zukowska-Szczechowska, Ewa , Berzuini, Carlo , Woolf, Adrian , Samani, Nilesh , Charchar, Fadi , Tomaszewski, Maciej
- Date: 2018
- Type: Text , Journal article
- Relation: Nature communications Vol. 9, no. 1 (2018), p. 1-12
- Full Text:
- Reviewed:
- Description: Genome-wide association studies (GWAS) have identified >100 loci of chronic kidney disease-defining traits (CKD-dt). Molecular mechanisms underlying these associations remain elusive. Using 280 kidney transcriptomes and 9958 gene expression profiles from 44 non-renal tissues we uncover gene expression partners (eGenes) for 88.9% of CKD-dt GWAS loci. Through epigenomic chromatin segmentation analysis and variant effect prediction we annotate functional consequences to 74% of these loci. Our colocalisation analysis and Mendelian randomisation in >130,000 subjects demonstrate causal effects of three eGenes (NAT8B, CASP9 and MUC1) on estimated glomerular filtration rate. We identify a common alternative splice variant in MUC1 (a gene responsible for rare Mendelian form of kidney disease) and observe increased renal expression of a specific MUC1 mRNA isoform as a plausible molecular mechanism of the GWAS association signal. These data highlight the variants and genes underpinning the associations uncovered in GWAS of CKD-dt.
- Authors: Xu, Xiaoguang , Eales, James , Akbarov, Artur , Guo, Hui , Becker, Lorenz , Talavera, David , Ashraf, Fehzan , Nawaz, Jabran , Pramanik, Sanjeev , Bowes, John , Jiang, Xiao , Dormer, John , Denniff, Matthew , Antczak, Andrzej , Szulinska, Monika , Wise, Ingrid , Prestes, Priscilla , Glyda, Maciej , Bogdanski, Pawel , Zukowska-Szczechowska, Ewa , Berzuini, Carlo , Woolf, Adrian , Samani, Nilesh , Charchar, Fadi , Tomaszewski, Maciej
- Date: 2018
- Type: Text , Journal article
- Relation: Nature communications Vol. 9, no. 1 (2018), p. 1-12
- Full Text:
- Reviewed:
- Description: Genome-wide association studies (GWAS) have identified >100 loci of chronic kidney disease-defining traits (CKD-dt). Molecular mechanisms underlying these associations remain elusive. Using 280 kidney transcriptomes and 9958 gene expression profiles from 44 non-renal tissues we uncover gene expression partners (eGenes) for 88.9% of CKD-dt GWAS loci. Through epigenomic chromatin segmentation analysis and variant effect prediction we annotate functional consequences to 74% of these loci. Our colocalisation analysis and Mendelian randomisation in >130,000 subjects demonstrate causal effects of three eGenes (NAT8B, CASP9 and MUC1) on estimated glomerular filtration rate. We identify a common alternative splice variant in MUC1 (a gene responsible for rare Mendelian form of kidney disease) and observe increased renal expression of a specific MUC1 mRNA isoform as a plausible molecular mechanism of the GWAS association signal. These data highlight the variants and genes underpinning the associations uncovered in GWAS of CKD-dt.
Muscle-enriched MicroRNAs isolated from whole blood are regulated by exercise and are potential biomarkers of cardiorespiratory fitness
- Denham, Joshua, Prestes, Priscilla
- Authors: Denham, Joshua , Prestes, Priscilla
- Date: 2016
- Type: Text , Journal article
- Relation: Frontiers in Genetics Vol. 7, no. NOV (2016), p. 1-8
- Full Text:
- Reviewed:
- Description: MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally. Evidence indicating miRNAs influence exercise-induced health and performance adaptations is mounting. Circulating miRNAs are responsible for intercellular communication and could serve as biomarkers for disease and exercise-related traits. Such biomarkers would contribute to exercise screening, monitoring, and the development of personalized exercise prescription. Accordingly, we investigated the impact of long-term strenuous aerobic exercise training and a single bout of maximal aerobic exercise on five muscle-enriched miRNAs implicated in exercise adaptations (miR-1, miR-133a, miR-181a, miR-486, and miR-494). We also determined linear correlations between miRNAs, resting heart rate, and maximum oxygen uptake (V˙O2 max). We used TaqMan assay quantitative polymerase chain reaction to analyze the abundance of miR-1, miR-133a, miR-181a, miR-486, and miR-494 in resting whole blood of 67 endurance athletes and 61 healthy controls. Relative to controls, endurance athletes exhibited increased miR-1, miR-486, and miR-494 content (1.26- to 1.58-fold change, all p < 0.05). miR-1, miR-133a, and miR-486 were decreased immediately after maximal aerobic exercise (0.64- to 0.76-fold change, all p < 0.01) performed by 19 healthy, young men (20.7 ± 2.4 years). Finally, we observed positive correlations between miRNA abundance and V˙ O2 max (miR-1 and miR-486) and an inverse correlation between miR-486 and resting heart rate. Therefore, muscle-enriched miRNAs isolated from whole blood are regulated by acute and long-term aerobic exercise training and could serve as biomarkers of cardiorespiratory fitness. © 2016 Denham and Prestes.
- Authors: Denham, Joshua , Prestes, Priscilla
- Date: 2016
- Type: Text , Journal article
- Relation: Frontiers in Genetics Vol. 7, no. NOV (2016), p. 1-8
- Full Text:
- Reviewed:
- Description: MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally. Evidence indicating miRNAs influence exercise-induced health and performance adaptations is mounting. Circulating miRNAs are responsible for intercellular communication and could serve as biomarkers for disease and exercise-related traits. Such biomarkers would contribute to exercise screening, monitoring, and the development of personalized exercise prescription. Accordingly, we investigated the impact of long-term strenuous aerobic exercise training and a single bout of maximal aerobic exercise on five muscle-enriched miRNAs implicated in exercise adaptations (miR-1, miR-133a, miR-181a, miR-486, and miR-494). We also determined linear correlations between miRNAs, resting heart rate, and maximum oxygen uptake (V˙O2 max). We used TaqMan assay quantitative polymerase chain reaction to analyze the abundance of miR-1, miR-133a, miR-181a, miR-486, and miR-494 in resting whole blood of 67 endurance athletes and 61 healthy controls. Relative to controls, endurance athletes exhibited increased miR-1, miR-486, and miR-494 content (1.26- to 1.58-fold change, all p < 0.05). miR-1, miR-133a, and miR-486 were decreased immediately after maximal aerobic exercise (0.64- to 0.76-fold change, all p < 0.01) performed by 19 healthy, young men (20.7 ± 2.4 years). Finally, we observed positive correlations between miRNA abundance and V˙ O2 max (miR-1 and miR-486) and an inverse correlation between miR-486 and resting heart rate. Therefore, muscle-enriched miRNAs isolated from whole blood are regulated by acute and long-term aerobic exercise training and could serve as biomarkers of cardiorespiratory fitness. © 2016 Denham and Prestes.
Plasma lipocalin-2/NGAL is stable over 12 weeks and is not modulated by exercise or dieting
- Nakai, Michael, Prestes, Priscilla, O’Brien, Brendan, Charchar, Fadi, Marques, Francine
- Authors: Nakai, Michael , Prestes, Priscilla , O’Brien, Brendan , Charchar, Fadi , Marques, Francine
- Date: 2021
- Type: Text , Journal article
- Relation: Scientific Reports Vol. 11, no. 1 (2021), p.
- Full Text:
- Reviewed:
- Description: Amongst other immune cells, neutrophils play a key role in systemic inflammation leading to cardiovascular disease and can release inflammatory factors, including lipocalin-2 (LCN2). LCN2 drives cardiac hypertrophy and plays a role in maladaptive remodelling of the heart and has been associated with renal injury. While lifestyle factors such as diet and exercise are known to attenuate low-grade inflammation, their ability to modulate plasma LCN2 levels is unknown. Forty-eight endurance athletes and 52 controls (18–55 years) underwent measurement for various cardiovascular health indicators, along with plasma LCN2 concentration. No significant difference in LCN2 concentration was seen between the two groups. LCN2 was a very weak predictor or absent from models describing blood pressures or predicting athlete status. In another cohort, 57 non-diabetic overweight or obese men and post-menopausal women who fulfilled Adult Treatment Panel III metabolic syndrome criteria were randomly allocated into either a control, modified Dietary Approaches to Stop Hypertension (DASH) diet, or DASH and exercise group. Pre- and post-intervention demographic, cardiovascular health indicators, and plasma LCN2 expression were measured in each individual. While BMI fell in intervention groups, LCN2 levels remained unchanged within and between all groups, as illustrated by strong correlations between LCN2 concentrations pre- and 12 weeks post-intervention (r = 0.743, P < 0.0001). This suggests that circulating LCN2 expression are stable over a period of at least 12 weeks and is not modifiable by diet and exercise. © 2021, The Author(s). *Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Priscilla Prestes, Brendan O'Brien, Fadi Charchar and Francine Marques” is provided in this record** .
- Authors: Nakai, Michael , Prestes, Priscilla , O’Brien, Brendan , Charchar, Fadi , Marques, Francine
- Date: 2021
- Type: Text , Journal article
- Relation: Scientific Reports Vol. 11, no. 1 (2021), p.
- Full Text:
- Reviewed:
- Description: Amongst other immune cells, neutrophils play a key role in systemic inflammation leading to cardiovascular disease and can release inflammatory factors, including lipocalin-2 (LCN2). LCN2 drives cardiac hypertrophy and plays a role in maladaptive remodelling of the heart and has been associated with renal injury. While lifestyle factors such as diet and exercise are known to attenuate low-grade inflammation, their ability to modulate plasma LCN2 levels is unknown. Forty-eight endurance athletes and 52 controls (18–55 years) underwent measurement for various cardiovascular health indicators, along with plasma LCN2 concentration. No significant difference in LCN2 concentration was seen between the two groups. LCN2 was a very weak predictor or absent from models describing blood pressures or predicting athlete status. In another cohort, 57 non-diabetic overweight or obese men and post-menopausal women who fulfilled Adult Treatment Panel III metabolic syndrome criteria were randomly allocated into either a control, modified Dietary Approaches to Stop Hypertension (DASH) diet, or DASH and exercise group. Pre- and post-intervention demographic, cardiovascular health indicators, and plasma LCN2 expression were measured in each individual. While BMI fell in intervention groups, LCN2 levels remained unchanged within and between all groups, as illustrated by strong correlations between LCN2 concentrations pre- and 12 weeks post-intervention (r = 0.743, P < 0.0001). This suggests that circulating LCN2 expression are stable over a period of at least 12 weeks and is not modifiable by diet and exercise. © 2021, The Author(s). *Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Priscilla Prestes, Brendan O'Brien, Fadi Charchar and Francine Marques” is provided in this record** .
- Prestes, Priscilla, Mitchell, Robert, Daniel, Runa, Sanchez, Juan, van Oorschot, Roland
- Authors: Prestes, Priscilla , Mitchell, Robert , Daniel, Runa , Sanchez, Juan , van Oorschot, Roland
- Date: 2016
- Type: Text , Journal article
- Relation: Australian Journal of Forensic Sciences Vol. 48, no. 1 (2016), p. 10-23
- Full Text: false
- Reviewed:
Telomere dynamics during aging in polygenic left ventricular hypertrophy
- Marques, Francine, Booth, Scott, Prestes, Priscilla, Curl, Claire, Delbridge, Lea, Lewandowski, Paul, Harrap, Stephen, Charchar, Fadi
- Authors: Marques, Francine , Booth, Scott , Prestes, Priscilla , Curl, Claire , Delbridge, Lea , Lewandowski, Paul , Harrap, Stephen , Charchar, Fadi
- Date: 2016
- Type: Text , Journal article
- Relation: Physiological Genomics Vol. 48, no. 1 (2016), p. 42-49
- Full Text:
- Reviewed:
- Description: Short telomeres are associated with increased risk of cardiovascular disease. Here we studied cardiomyocyte telomere length at key ages during the ontogeny of cardiac hypertrophy and failure in the hypertrophic heart rat (HHR) and compared these with the normal heart rat (NHR) control strain. Key ages corresponded with the pathophysiological sequence beginning with fewer cardiomyocytes (2 days), leading to left ventricular hypertrophy (LVH) (13 wk) and subsequently progression to heart failure (38 wk). We measured telomere length, tissue activity of telomerase, mRNA levels of telomerase reverse transcriptase (Tert) and telomerase RNA component (Terc), and expression of the telomeric regulator microRNA miR-34a. Cardiac telomere length was longer in the HHR compared with the control strain at 2 days and 38 wk, but shorter at 13 wk. Neonatal HHR had higher cardiac telomerase activity and expression of Tert and miR-34a. Telomerase activity was not different at 13 or 38 wk. Tert mRNA and Terc RNA were overexpressed at 38 wk, while miR-34a was overexpressed at 13 wk but downregulated at 38 wk. Circulating leukocytes were strongly correlated with cardiac telomere length in the HHR only. The longer neonatal telomeres in HHR are likely to reflect fewer fetal and early postnatal cardiomyocyte cell divisions and explain the reduced total cardiomyocyte complement that predisposes to later hypertrophy and failure. Although shorter telomeres were a feature of cardiac hypertrophy at 13 wk, they were not present at the progression to heart failure at 38 wk. © 2016 the American Physiological Society.
- Authors: Marques, Francine , Booth, Scott , Prestes, Priscilla , Curl, Claire , Delbridge, Lea , Lewandowski, Paul , Harrap, Stephen , Charchar, Fadi
- Date: 2016
- Type: Text , Journal article
- Relation: Physiological Genomics Vol. 48, no. 1 (2016), p. 42-49
- Full Text:
- Reviewed:
- Description: Short telomeres are associated with increased risk of cardiovascular disease. Here we studied cardiomyocyte telomere length at key ages during the ontogeny of cardiac hypertrophy and failure in the hypertrophic heart rat (HHR) and compared these with the normal heart rat (NHR) control strain. Key ages corresponded with the pathophysiological sequence beginning with fewer cardiomyocytes (2 days), leading to left ventricular hypertrophy (LVH) (13 wk) and subsequently progression to heart failure (38 wk). We measured telomere length, tissue activity of telomerase, mRNA levels of telomerase reverse transcriptase (Tert) and telomerase RNA component (Terc), and expression of the telomeric regulator microRNA miR-34a. Cardiac telomere length was longer in the HHR compared with the control strain at 2 days and 38 wk, but shorter at 13 wk. Neonatal HHR had higher cardiac telomerase activity and expression of Tert and miR-34a. Telomerase activity was not different at 13 or 38 wk. Tert mRNA and Terc RNA were overexpressed at 38 wk, while miR-34a was overexpressed at 13 wk but downregulated at 38 wk. Circulating leukocytes were strongly correlated with cardiac telomere length in the HHR only. The longer neonatal telomeres in HHR are likely to reflect fewer fetal and early postnatal cardiomyocyte cell divisions and explain the reduced total cardiomyocyte complement that predisposes to later hypertrophy and failure. Although shorter telomeres were a feature of cardiac hypertrophy at 13 wk, they were not present at the progression to heart failure at 38 wk. © 2016 the American Physiological Society.