Effects on photosynthetic response and biomass productivity of acacia longifolia ssp. longifolia under elevated CO2 and water-limited regimes
- Javaid, Muhammad, Wang, Xiukang, Florentine, Singarayer, Ashraf, Muhammad, Mahmood, Athar, Li, Feng-Min, Fiaz, Sajid
- Authors: Javaid, Muhammad , Wang, Xiukang , Florentine, Singarayer , Ashraf, Muhammad , Mahmood, Athar , Li, Feng-Min , Fiaz, Sajid
- Date: 2022
- Type: Text , Journal article
- Relation: Frontiers in Plant Science Vol. 13, no. (2022), p.
- Full Text:
- Reviewed:
- Description: It is known that the impact of elevated CO2 (eCO2) will cause differential photosynthetic responses in plants, resulting in varying magnitudes of growth and productivity of competing species. Because of the aggressive invasive nature of Acacia longifolia ssp. longifolia, this study is designed to investigate the effect of eCO2 on gas exchange parameters, water use efficiency, photosystem II (PSII) activities, and growth of this species. Plants of A. longifolia ssp. longifolia were grown at 400 ppm (ambient) and 700 ppm (elevated) CO2 under 100 and 60% field capacity. Leaf gas exchange parameters, water use efficiency, intrinsic water use efficiency, instantaneous carboxylation efficiency, and PSII activity were measured for 10 days at 2-day intervals. eCO2 mitigated the adverse effects of drought conditions on the aforementioned parameters compared to that grown under ambient CO2 (aCO2) conditions. A. longifolia, grown under drought conditions and re-watered at day 8, indicated a partial recovery in most of the parameters measured, suggesting that the recovery of this species under eCO2 will be higher than that with aCO2 concentration. This gave an increase in water use efficiency, which is one of the reasons for the observed enhanced growth of A. longifolia under drought stress. Thus, eCO2 will allow to adopt this species in the new environment, even under severe climatic conditions, and foreshadow its likelihood of invasion into new areas. Copyright © 2022 Javaid, Wang, Florentine, Ashraf, Mahmood, Li and Fiaz.
- Authors: Javaid, Muhammad , Wang, Xiukang , Florentine, Singarayer , Ashraf, Muhammad , Mahmood, Athar , Li, Feng-Min , Fiaz, Sajid
- Date: 2022
- Type: Text , Journal article
- Relation: Frontiers in Plant Science Vol. 13, no. (2022), p.
- Full Text:
- Reviewed:
- Description: It is known that the impact of elevated CO2 (eCO2) will cause differential photosynthetic responses in plants, resulting in varying magnitudes of growth and productivity of competing species. Because of the aggressive invasive nature of Acacia longifolia ssp. longifolia, this study is designed to investigate the effect of eCO2 on gas exchange parameters, water use efficiency, photosystem II (PSII) activities, and growth of this species. Plants of A. longifolia ssp. longifolia were grown at 400 ppm (ambient) and 700 ppm (elevated) CO2 under 100 and 60% field capacity. Leaf gas exchange parameters, water use efficiency, intrinsic water use efficiency, instantaneous carboxylation efficiency, and PSII activity were measured for 10 days at 2-day intervals. eCO2 mitigated the adverse effects of drought conditions on the aforementioned parameters compared to that grown under ambient CO2 (aCO2) conditions. A. longifolia, grown under drought conditions and re-watered at day 8, indicated a partial recovery in most of the parameters measured, suggesting that the recovery of this species under eCO2 will be higher than that with aCO2 concentration. This gave an increase in water use efficiency, which is one of the reasons for the observed enhanced growth of A. longifolia under drought stress. Thus, eCO2 will allow to adopt this species in the new environment, even under severe climatic conditions, and foreshadow its likelihood of invasion into new areas. Copyright © 2022 Javaid, Wang, Florentine, Ashraf, Mahmood, Li and Fiaz.
Interactive effect of elevated CO2 and drought on physiological traits of Datura stramonium
- Javaid, Muhammad, Florentine, Singarayer, Mahmood, Athar, Wasaya, Allah, Javed, Talha, Sattar, Abdul, Sarwar, Naeem, Kalaji, Hazem, Ahmad, Hafiz, Worbel, Jacek, Ahmed, Mohammed, Telesiński, Arkadiusz, Mojski, Jacek
- Authors: Javaid, Muhammad , Florentine, Singarayer , Mahmood, Athar , Wasaya, Allah , Javed, Talha , Sattar, Abdul , Sarwar, Naeem , Kalaji, Hazem , Ahmad, Hafiz , Worbel, Jacek , Ahmed, Mohammed , Telesiński, Arkadiusz , Mojski, Jacek
- Date: 2022
- Type: Text , Journal article
- Relation: Frontiers in Plant Science Vol. 13, no. (2022), p.
- Full Text:
- Reviewed:
- Description: Rising atmospheric CO2 concentrations are known to influence the response of many plants under drought. This paper aimed to measure the leaf gas exchange, water use efficiency, carboxylation efficiency, and photosystem II (PS II) activity of Datura stramonium under progressive drought conditions, along with ambient conditions of 400 ppm (aCO2) and elevated conditions of 700 ppm (eCO2). Plants of D. stramonium were grown at 400 ppm and 700 ppm under 100 and 60% field capacity in a laboratory growth chamber. For 10 days at two-day intervals, photosynthesis rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, water use efficiency, intrinsic water use efficiency, instantaneous carboxylation efficiency, PSII activity, electron transport rate, and photochemical quenching were measured. While drought stress had generally negative effects on the aforementioned physiological traits of D. stramonium, it was found that eCO2 concentration mitigated the adverse effects of drought and most of the physiological parameters were sustained with increasing drought duration when compared to that with aCO2. D. stramonium, which was grown under drought conditions, was re-watered on day 8 and indicated a partial recovery in all the parameters except maximum fluorescence, with this recovery being higher with eCO2 compared to aCO2. These results suggest that elevated CO2 mitigates the adverse growth effects of drought, thereby enhancing the adaptive mechanism of this weed by improving its water use efficiency. It is concluded that this weed has the potential to take advantage of climate change by increasing its competitiveness with other plants in drought-prone areas, suggesting that it could expand into new localities. Copyright © 2022 Javaid, Florentine, Mahmood, Wasaya, Javed, Sattar, Sarwar, Kalaji, Ahmad, Worbel, Ahmed, Telesiński and Mojski.
- Authors: Javaid, Muhammad , Florentine, Singarayer , Mahmood, Athar , Wasaya, Allah , Javed, Talha , Sattar, Abdul , Sarwar, Naeem , Kalaji, Hazem , Ahmad, Hafiz , Worbel, Jacek , Ahmed, Mohammed , Telesiński, Arkadiusz , Mojski, Jacek
- Date: 2022
- Type: Text , Journal article
- Relation: Frontiers in Plant Science Vol. 13, no. (2022), p.
- Full Text:
- Reviewed:
- Description: Rising atmospheric CO2 concentrations are known to influence the response of many plants under drought. This paper aimed to measure the leaf gas exchange, water use efficiency, carboxylation efficiency, and photosystem II (PS II) activity of Datura stramonium under progressive drought conditions, along with ambient conditions of 400 ppm (aCO2) and elevated conditions of 700 ppm (eCO2). Plants of D. stramonium were grown at 400 ppm and 700 ppm under 100 and 60% field capacity in a laboratory growth chamber. For 10 days at two-day intervals, photosynthesis rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, water use efficiency, intrinsic water use efficiency, instantaneous carboxylation efficiency, PSII activity, electron transport rate, and photochemical quenching were measured. While drought stress had generally negative effects on the aforementioned physiological traits of D. stramonium, it was found that eCO2 concentration mitigated the adverse effects of drought and most of the physiological parameters were sustained with increasing drought duration when compared to that with aCO2. D. stramonium, which was grown under drought conditions, was re-watered on day 8 and indicated a partial recovery in all the parameters except maximum fluorescence, with this recovery being higher with eCO2 compared to aCO2. These results suggest that elevated CO2 mitigates the adverse growth effects of drought, thereby enhancing the adaptive mechanism of this weed by improving its water use efficiency. It is concluded that this weed has the potential to take advantage of climate change by increasing its competitiveness with other plants in drought-prone areas, suggesting that it could expand into new localities. Copyright © 2022 Javaid, Florentine, Mahmood, Wasaya, Javed, Sattar, Sarwar, Kalaji, Ahmad, Worbel, Ahmed, Telesiński and Mojski.
Photosynthetic activity and water use efficiency of Salvia verbenaca L. under elevated CO2 and water‐deficit conditions
- Javaid, Muhammad, Florentine, Singarayer, Ashraf, Muhammad, Mahmood, Athar, Sattar, Abdul, Wasaya, Allah, Li, Feng‐Min
- Authors: Javaid, Muhammad , Florentine, Singarayer , Ashraf, Muhammad , Mahmood, Athar , Sattar, Abdul , Wasaya, Allah , Li, Feng‐Min
- Date: 2022
- Type: Text , Journal article
- Relation: Journal of agronomy and crop science Vol. 208, no. 4 (2022), p. 536-551
- Full Text:
- Reviewed:
- Description: Investigating the combined effects of elevated CO2 concentration and water‐deficit on weed plants is crucial to gaining a thorough understanding of plant performance and modifying agricultural processes under changing climate conditions. This study examined the effect of elevated CO2 concentration and water‐deficit conditions on leaf gas exchange, water use efficiency, carboxylation efficiency and the photosystem II (PSII) activity of two Salvia verbenaca L., varieties. These varieties were grown under two CO2 concentrations (ambient conditions of 400 ppm and elevated conditions of 700 ppm) and two water regimes (well‐watered [100% field capacity] and water‐deficit conditions [60% field capacity]) in laboratory growth chambers. For 12 days, at 2‐day intervals, (i) leaf gas exchange parameters (photosynthesis rate, stomatal conductance, transpiration rate (E) and intercellular CO2 concentration (Ci)), (ii) water use efficiency (WUE), (iii) intrinsic water use efficiency (IWUE), (iv) instantaneous carboxylation efficiency and (v) PSII activity (fluorescence, quantum yield of PSII, photochemical efficiency of PSII, photochemical quenching and photosynthetic electron transport) were measured. Water‐deficit conditions had negative effects on studied parameters of both varieties, whereas elevated CO2 concentration had positive effects on the gas exchange, water use efficiency and PSII activity of both. Salvia verbenaca varieties grown under water‐deficit conditions from Day 0 to Day 5 showed a partial recovery in most of the parameters when the resumption of the well‐watered regime was reinstituted on Day 6. Salvia verbenaca varieties grown under water‐deficit conditions were re‐watered on day 6 and indicated a partial recovery in all the parameters. A comparison of the two varieties showed that var. vernalis recorded higher values of gas exchange, quantum yield of PSII and photochemical efficiency of PSII than var. verbenaca, but the water use efficiency of var. verbenaca was higher than that of var. vernalis. These differences serve to illustrate the complexity of such studies and suggest that a detailed understanding of the nature of weed infestations is essential if optimum management control is to be practiced. Elevated CO2 concentration mitigated the adverse effects of water‐deficit conditions and thereby enhanced the adaptive mechanism of this weed by improving its water use efficiency. It is thus likely that S. verbenaca has the potential to take advantage of climate change by increasing its relative competitiveness with other plants in drought‐prone areas, suggesting that it could significantly expand its invasive range under such conditions.
- Authors: Javaid, Muhammad , Florentine, Singarayer , Ashraf, Muhammad , Mahmood, Athar , Sattar, Abdul , Wasaya, Allah , Li, Feng‐Min
- Date: 2022
- Type: Text , Journal article
- Relation: Journal of agronomy and crop science Vol. 208, no. 4 (2022), p. 536-551
- Full Text:
- Reviewed:
- Description: Investigating the combined effects of elevated CO2 concentration and water‐deficit on weed plants is crucial to gaining a thorough understanding of plant performance and modifying agricultural processes under changing climate conditions. This study examined the effect of elevated CO2 concentration and water‐deficit conditions on leaf gas exchange, water use efficiency, carboxylation efficiency and the photosystem II (PSII) activity of two Salvia verbenaca L., varieties. These varieties were grown under two CO2 concentrations (ambient conditions of 400 ppm and elevated conditions of 700 ppm) and two water regimes (well‐watered [100% field capacity] and water‐deficit conditions [60% field capacity]) in laboratory growth chambers. For 12 days, at 2‐day intervals, (i) leaf gas exchange parameters (photosynthesis rate, stomatal conductance, transpiration rate (E) and intercellular CO2 concentration (Ci)), (ii) water use efficiency (WUE), (iii) intrinsic water use efficiency (IWUE), (iv) instantaneous carboxylation efficiency and (v) PSII activity (fluorescence, quantum yield of PSII, photochemical efficiency of PSII, photochemical quenching and photosynthetic electron transport) were measured. Water‐deficit conditions had negative effects on studied parameters of both varieties, whereas elevated CO2 concentration had positive effects on the gas exchange, water use efficiency and PSII activity of both. Salvia verbenaca varieties grown under water‐deficit conditions from Day 0 to Day 5 showed a partial recovery in most of the parameters when the resumption of the well‐watered regime was reinstituted on Day 6. Salvia verbenaca varieties grown under water‐deficit conditions were re‐watered on day 6 and indicated a partial recovery in all the parameters. A comparison of the two varieties showed that var. vernalis recorded higher values of gas exchange, quantum yield of PSII and photochemical efficiency of PSII than var. verbenaca, but the water use efficiency of var. verbenaca was higher than that of var. vernalis. These differences serve to illustrate the complexity of such studies and suggest that a detailed understanding of the nature of weed infestations is essential if optimum management control is to be practiced. Elevated CO2 concentration mitigated the adverse effects of water‐deficit conditions and thereby enhanced the adaptive mechanism of this weed by improving its water use efficiency. It is thus likely that S. verbenaca has the potential to take advantage of climate change by increasing its relative competitiveness with other plants in drought‐prone areas, suggesting that it could significantly expand its invasive range under such conditions.
Phytoremediation of atmospheric pollutants in the era of climate change
- Khan, Atika, Riaz, Anam, Mahmood, Athar, Bibi, Safura, Florentine, Singarayer, Javaid, Muhammad, Nargis, Javaria
- Authors: Khan, Atika , Riaz, Anam , Mahmood, Athar , Bibi, Safura , Florentine, Singarayer , Javaid, Muhammad , Nargis, Javaria
- Date: 2023
- Type: Text , Book chapter
- Relation: Climate-resilient agriculture, vol 1 : crop responses and agroecological perspectives Chapter 12 p. 257-272
- Full Text: false
- Reviewed:
- Description: It is now widely recognized that natural vegetation and many economically important crop species are significantly harmed by a variety of compounds that are found in the atmosphere in the form of pollutants. These pollutants are the result of anthropomorphic actions, which lead to increasing concentrations of harmful chemicals in the atmosphere. These include oxides of sulfur and nitrogen, ozone (O 3), volatile organic compounds (VOCs), carbon monoxide, fluorides, and organic particulate matter (PM). With regard to the effect of these chemicals on crops and other vegetable species, the amount and type of damage depend on the concentration of gaseous pollutants in the atmosphere, the duration of the exposure time for the crops, and the nature of the growing season. Furthermore, the genotype of the plant governs the extent of damage caused by these atmospheric pollutants and can result in either acute or chronic damage. Polluting chemical contaminants have a variety of direct impacts on vegetation, which can include the plants' heat exchange parameters, together with their biological properties, antimicrobial activities, gene functions, and yielding characteristics. In addition, they frequently show modifications to the foliar structure and photosynthetic processes, which can cause an increase in the emission of reactive oxygen species, which are harmful to the plants' biological, physiological, and biochemical processes. These species can include hydroxyl radicals, singlet oxygen, and hydrogen peroxide, and, consequently, the health of crops, for example, will require remedial action, such as the neutralization of free radicals by the formation and coordinated action of enzymatic and nonenzymatic antioxidants. In order to contribute to such remediation processes, this chapter has focused on these air pollutants and their impact on vital physiological functions such as photosynthesis, respiration, carbon allocation, and the stomatal function of plants. © The Author(s). All rights reserved.
- «
- ‹
- 1
- ›
- »