Attributed collaboration network embedding for academic relationship mining
- Wang, Wei, Liu, Jiaying, Tang, Tao, Tuarob, Suppawong, Xia, Feng, Gong, Zhiguo, King, Irwin
- Authors: Wang, Wei , Liu, Jiaying , Tang, Tao , Tuarob, Suppawong , Xia, Feng , Gong, Zhiguo , King, Irwin
- Date: 2021
- Type: Text , Journal article
- Relation: ACM Transactions on the Web Vol. 15, no. 1 (2021), p.
- Full Text:
- Reviewed:
- Description: Finding both efficient and effective quantitative representations for scholars in scientific digital libraries has been a focal point of research. The unprecedented amounts of scholarly datasets, combined with contemporary machine learning and big data techniques, have enabled intelligent and automatic profiling of scholars from this vast and ever-increasing pool of scholarly data. Meanwhile, recent advance in network embedding techniques enables us to mitigate the challenges of large scale and sparsity of academic collaboration networks. In real-world academic social networks, scholars are accompanied with various attributes or features, such as co-authorship and publication records, which result in attributed collaboration networks. It has been observed that both network topology and scholar attributes are important in academic relationship mining. However, previous studies mainly focus on network topology, whereas scholar attributes are overlooked. Moreover, the influence of different scholar attributes are unclear. To bridge this gap, in this work, we present a novel framework of Attributed Collaboration Network Embedding (ACNE) for academic relationship mining. ACNE extracts four types of scholar attributes based on the proposed scholar profiling model, including demographics, research, influence, and sociability. ACNE can learn a low-dimensional representation of scholars considering both scholar attributes and network topology simultaneously. We demonstrate the effectiveness and potentials of ACNE in academic relationship mining by performing collaborator recommendation on two real-world datasets and the contribution and importance of each scholar attribute on scientific collaborator recommendation is investigated. Our work may shed light on academic relationship mining by taking advantage of attributed collaboration network embedding. © 2020 ACM.
- Authors: Wang, Wei , Liu, Jiaying , Tang, Tao , Tuarob, Suppawong , Xia, Feng , Gong, Zhiguo , King, Irwin
- Date: 2021
- Type: Text , Journal article
- Relation: ACM Transactions on the Web Vol. 15, no. 1 (2021), p.
- Full Text:
- Reviewed:
- Description: Finding both efficient and effective quantitative representations for scholars in scientific digital libraries has been a focal point of research. The unprecedented amounts of scholarly datasets, combined with contemporary machine learning and big data techniques, have enabled intelligent and automatic profiling of scholars from this vast and ever-increasing pool of scholarly data. Meanwhile, recent advance in network embedding techniques enables us to mitigate the challenges of large scale and sparsity of academic collaboration networks. In real-world academic social networks, scholars are accompanied with various attributes or features, such as co-authorship and publication records, which result in attributed collaboration networks. It has been observed that both network topology and scholar attributes are important in academic relationship mining. However, previous studies mainly focus on network topology, whereas scholar attributes are overlooked. Moreover, the influence of different scholar attributes are unclear. To bridge this gap, in this work, we present a novel framework of Attributed Collaboration Network Embedding (ACNE) for academic relationship mining. ACNE extracts four types of scholar attributes based on the proposed scholar profiling model, including demographics, research, influence, and sociability. ACNE can learn a low-dimensional representation of scholars considering both scholar attributes and network topology simultaneously. We demonstrate the effectiveness and potentials of ACNE in academic relationship mining by performing collaborator recommendation on two real-world datasets and the contribution and importance of each scholar attribute on scientific collaborator recommendation is investigated. Our work may shed light on academic relationship mining by taking advantage of attributed collaboration network embedding. © 2020 ACM.
Collaborative filtering with network representation learning for citation recommendation
- Wang, Wei, Tang, Tao, Xia, Feng, Gong, Zhiguo, Chen, Zhikui, Liu, Huan
- Authors: Wang, Wei , Tang, Tao , Xia, Feng , Gong, Zhiguo , Chen, Zhikui , Liu, Huan
- Date: 2022
- Type: Text , Journal article
- Relation: IEEE Transactions on Big Data Vol. 8, no. 5 (2022), p. 1233-1246
- Full Text:
- Reviewed:
- Description: Citation recommendation plays an important role in the context of scholarly big data, where finding relevant papers has become more difficult because of information overload. Applying traditional collaborative filtering (CF) to citation recommendation is challenging due to the cold start problem and the lack of paper ratings. To address these challenges, in this article, we propose a collaborative filtering with network representation learning framework for citation recommendation, namely CNCRec, which is a hybrid user-based CF considering both paper content and network topology. It aims at recommending citations in heterogeneous academic information networks. CNCRec creates the paper rating matrix based on attributed citation network representation learning, where the attributes are topics extracted from the paper text information. Meanwhile, the learned representations of attributed collaboration network is utilized to improve the selection of nearest neighbors. By harnessing the power of network representation learning, CNCRec is able to make full use of the whole citation network topology compared with previous context-aware network-based models. Extensive experiments on both DBLP and APS datasets show that the proposed method outperforms state-of-the-art methods in terms of precision, recall, and MRR (Mean Reciprocal Rank). Moreover, CNCRec can better solve the data sparsity problem compared with other CF-based baselines. © 2015 IEEE.
- Authors: Wang, Wei , Tang, Tao , Xia, Feng , Gong, Zhiguo , Chen, Zhikui , Liu, Huan
- Date: 2022
- Type: Text , Journal article
- Relation: IEEE Transactions on Big Data Vol. 8, no. 5 (2022), p. 1233-1246
- Full Text:
- Reviewed:
- Description: Citation recommendation plays an important role in the context of scholarly big data, where finding relevant papers has become more difficult because of information overload. Applying traditional collaborative filtering (CF) to citation recommendation is challenging due to the cold start problem and the lack of paper ratings. To address these challenges, in this article, we propose a collaborative filtering with network representation learning framework for citation recommendation, namely CNCRec, which is a hybrid user-based CF considering both paper content and network topology. It aims at recommending citations in heterogeneous academic information networks. CNCRec creates the paper rating matrix based on attributed citation network representation learning, where the attributes are topics extracted from the paper text information. Meanwhile, the learned representations of attributed collaboration network is utilized to improve the selection of nearest neighbors. By harnessing the power of network representation learning, CNCRec is able to make full use of the whole citation network topology compared with previous context-aware network-based models. Extensive experiments on both DBLP and APS datasets show that the proposed method outperforms state-of-the-art methods in terms of precision, recall, and MRR (Mean Reciprocal Rank). Moreover, CNCRec can better solve the data sparsity problem compared with other CF-based baselines. © 2015 IEEE.
Not every couple is a pair : a supervised approach for lifetime collaborator identification
- Wang, Wei, Wan, Liangtian, Kong, Xiangjie, Gong, Zhiguo, Xia, Feng
- Authors: Wang, Wei , Wan, Liangtian , Kong, Xiangjie , Gong, Zhiguo , Xia, Feng
- Date: 2019
- Type: Text , Conference paper
- Relation: 23rd Pacific Asia Conference on Information Systems: Secure ICT Platform for the 4th Industrial Revolution, PACIS 2019, Xian, 8-12 July 2019
- Full Text: false
- Reviewed:
- Description: While scientific collaboration can be critical for a scholar, some collaborator(s) can be more significant than others, a.k.a. lifetime collaborator(s). This work-in-progress aims to investigate whether it is possible to predict/identify lifetime collaborators given a junior scholar's early profile. For this purpose, we propose a supervised approach by leveraging scholars' local and network properties. Extensive experiments on DBLP digital library demonstrate that lifetime collaborators can be accurately predicted. The proposed model outperforms baseline models with various predictors. Our study may shed light on the exploration of scientific collaborations from the perspective of life-long collaboration. © Proceedings of the 23rd Pacific Asia Conference on Information Systems: Secure ICT Platform for the 4th Industrial Revolution, PACIS 2019.
Scholar2vec : vector representation of scholars for lifetime collaborator prediction
- Wang, Wei, Xia, Feng, Wu, Jian, Gong, Zhiguo, Tong, Hanghang, Davison, Brian
- Authors: Wang, Wei , Xia, Feng , Wu, Jian , Gong, Zhiguo , Tong, Hanghang , Davison, Brian
- Date: 2021
- Type: Text , Journal article
- Relation: ACM Transactions on Knowledge Discovery from Data Vol. 15, no. 3 (2021), p.
- Full Text:
- Reviewed:
- Description: While scientific collaboration is critical for a scholar, some collaborators can be more significant than others, e.g., lifetime collaborators. It has been shown that lifetime collaborators are more influential on a scholar's academic performance. However, little research has been done on investigating predicting such special relationships in academic networks. To this end, we propose Scholar2vec, a novel neural network embedding for representing scholar profiles. First, our approach creates scholars' research interest vector from textual information, such as demographics, research, and influence. After bridging research interests with a collaboration network, vector representations of scholars can be gained with graph learning. Meanwhile, since scholars are occupied with various attributes, we propose to incorporate four types of scholar attributes for learning scholar vectors. Finally, the early-stage similarity sequence based on Scholar2vec is used to predict lifetime collaborators with machine learning methods. Extensive experiments on two real-world datasets show that Scholar2vec outperforms state-of-the-art methods in lifetime collaborator prediction. Our work presents a new way to measure the similarity between two scholars by vector representation, which tackles the knowledge between network embedding and academic relationship mining. © 2021 Association for Computing Machinery.
- Authors: Wang, Wei , Xia, Feng , Wu, Jian , Gong, Zhiguo , Tong, Hanghang , Davison, Brian
- Date: 2021
- Type: Text , Journal article
- Relation: ACM Transactions on Knowledge Discovery from Data Vol. 15, no. 3 (2021), p.
- Full Text:
- Reviewed:
- Description: While scientific collaboration is critical for a scholar, some collaborators can be more significant than others, e.g., lifetime collaborators. It has been shown that lifetime collaborators are more influential on a scholar's academic performance. However, little research has been done on investigating predicting such special relationships in academic networks. To this end, we propose Scholar2vec, a novel neural network embedding for representing scholar profiles. First, our approach creates scholars' research interest vector from textual information, such as demographics, research, and influence. After bridging research interests with a collaboration network, vector representations of scholars can be gained with graph learning. Meanwhile, since scholars are occupied with various attributes, we propose to incorporate four types of scholar attributes for learning scholar vectors. Finally, the early-stage similarity sequence based on Scholar2vec is used to predict lifetime collaborators with machine learning methods. Extensive experiments on two real-world datasets show that Scholar2vec outperforms state-of-the-art methods in lifetime collaborator prediction. Our work presents a new way to measure the similarity between two scholars by vector representation, which tackles the knowledge between network embedding and academic relationship mining. © 2021 Association for Computing Machinery.
Vehicle trajectory clustering based on dynamic representation learning of internet of vehicles
- Wang, Wei, Xia, Feng, Nie, Hansong, Chen, Zhikui, Gong, Zhiguo
- Authors: Wang, Wei , Xia, Feng , Nie, Hansong , Chen, Zhikui , Gong, Zhiguo
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Transactions on Intelligent Transportation Systems Vol. 22, no. 6 (2021), p. 3567-3576
- Full Text:
- Reviewed:
- Description: With the widely used Internet of Things, 5G, and smart city technologies, we are able to acquire a variety of vehicle trajectory data. These trajectory data are of great significance which can be used to extract relevant information in order to, for instance, calculate the optimal path from one position to another, detect abnormal behavior, monitor the traffic flow in a city, and predict the next position of an object. One of the key technology is to cluster vehicle trajectory. However, existing methods mainly rely on manually designed metrics which may lead to biased results. Meanwhile, the large scale of vehicle trajectory data has become a challenge because calculating these manually designed metrics will cost more time and space. To address these challenges, we propose to employ network representation learning to achieve accurate vehicle trajectory clustering. Specifically, we first construct the k-nearest neighbor-based internet of vehicles in a dynamic manner. Then we learn the low-dimensional representations of vehicles by performing dynamic network representation learning on the constructed network. Finally, using the learned vehicle vectors, vehicle trajectories are clustered with machine learning methods. Experimental results on the real-word dataset show that our method achieves the best performance compared against baseline methods. © 2000-2011 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Feng Xia” is provided in this record**
- Authors: Wang, Wei , Xia, Feng , Nie, Hansong , Chen, Zhikui , Gong, Zhiguo
- Date: 2021
- Type: Text , Journal article
- Relation: IEEE Transactions on Intelligent Transportation Systems Vol. 22, no. 6 (2021), p. 3567-3576
- Full Text:
- Reviewed:
- Description: With the widely used Internet of Things, 5G, and smart city technologies, we are able to acquire a variety of vehicle trajectory data. These trajectory data are of great significance which can be used to extract relevant information in order to, for instance, calculate the optimal path from one position to another, detect abnormal behavior, monitor the traffic flow in a city, and predict the next position of an object. One of the key technology is to cluster vehicle trajectory. However, existing methods mainly rely on manually designed metrics which may lead to biased results. Meanwhile, the large scale of vehicle trajectory data has become a challenge because calculating these manually designed metrics will cost more time and space. To address these challenges, we propose to employ network representation learning to achieve accurate vehicle trajectory clustering. Specifically, we first construct the k-nearest neighbor-based internet of vehicles in a dynamic manner. Then we learn the low-dimensional representations of vehicles by performing dynamic network representation learning on the constructed network. Finally, using the learned vehicle vectors, vehicle trajectories are clustered with machine learning methods. Experimental results on the real-word dataset show that our method achieves the best performance compared against baseline methods. © 2000-2011 IEEE. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Feng Xia” is provided in this record**
Venue topic model-enhanced joint graph modelling for citation recommendation in scholarly big data
- Wang, Wei, Gong, Zhiguo, Ren, Jing, Xia, Feng, Lv, Zhihan, Wei, Wei
- Authors: Wang, Wei , Gong, Zhiguo , Ren, Jing , Xia, Feng , Lv, Zhihan , Wei, Wei
- Date: 2021
- Type: Text , Journal article
- Relation: ACM Transactions on Asian and Low-Resource Language Information Processing Vol. 20, no. 1 (2021), p.
- Full Text:
- Reviewed:
- Description: Natural language processing technologies, such as topic models, have been proven to be effective for scholarly recommendation tasks with the ability to deal with content information. Recently, venue recommendation is becoming an increasingly important research task due to the unprecedented number of publication venues. However, traditional methods focus on either the author's local network or author-venue similarity, where the multiple relationships between scholars and venues are overlooked, especially the venue-venue interaction. To solve this problem, we propose an author topic model-enhanced joint graph modeling approach that consists of venue topic modeling, venue-specific topic influence modeling, and scholar preference modeling. We first model the venue topic with Latent Dirichlet Allocation. Then, we model the venue-specific topic influence in an asymmetric and low-dimensional way by considering the topic similarity between venues, the top-influence of venues, and the top-susceptibility of venues. The top-influence characterizes venues' capacity of exerting topic influence on other venues. The top-susceptibility captures venues' propensity of being topically influenced by other venues. Extensive experiments on two real-world datasets show that our proposed joint graph modeling approach outperforms the state-of-The-Art methods. © 2020 ACM.
- Authors: Wang, Wei , Gong, Zhiguo , Ren, Jing , Xia, Feng , Lv, Zhihan , Wei, Wei
- Date: 2021
- Type: Text , Journal article
- Relation: ACM Transactions on Asian and Low-Resource Language Information Processing Vol. 20, no. 1 (2021), p.
- Full Text:
- Reviewed:
- Description: Natural language processing technologies, such as topic models, have been proven to be effective for scholarly recommendation tasks with the ability to deal with content information. Recently, venue recommendation is becoming an increasingly important research task due to the unprecedented number of publication venues. However, traditional methods focus on either the author's local network or author-venue similarity, where the multiple relationships between scholars and venues are overlooked, especially the venue-venue interaction. To solve this problem, we propose an author topic model-enhanced joint graph modeling approach that consists of venue topic modeling, venue-specific topic influence modeling, and scholar preference modeling. We first model the venue topic with Latent Dirichlet Allocation. Then, we model the venue-specific topic influence in an asymmetric and low-dimensional way by considering the topic similarity between venues, the top-influence of venues, and the top-susceptibility of venues. The top-influence characterizes venues' capacity of exerting topic influence on other venues. The top-susceptibility captures venues' propensity of being topically influenced by other venues. Extensive experiments on two real-world datasets show that our proposed joint graph modeling approach outperforms the state-of-The-Art methods. © 2020 ACM.
- «
- ‹
- 1
- ›
- »