A long-term habitat fragmentation experiment leads to morphological change in a species of carabid beetle
- Evans, Maldwyn, Banks, Sam, Barton, Philip, Davies, Kendi, Driscoll, Don
- Authors: Evans, Maldwyn , Banks, Sam , Barton, Philip , Davies, Kendi , Driscoll, Don
- Date: 2018
- Type: Text , Journal article
- Relation: Ecological Entomology Vol. 43, no. 3 (2018), p. 282-293
- Full Text:
- Reviewed:
- Description: 1. Habitat fragmentation and transformation are key drivers of species declines in landscapes. Most of the current understanding of species' responses to environmental change originates from studies of populations and communities. However, phenotypic variation offers another key aspect of species responses and could provide additional insights into the functional drivers of population change. 2. The goal of this study was to address this gap by exploring the morphological changes of a species of carabid beetle (Notonomus resplendens) with a known population response to the Wog Wog Habitat Fragmentation Experiment in Australia. We measured morphological traits associated with body size, head width, and dispersal ability. We quantified patterns of morphological variation over time and between native Eucalyptus forest fragments and the surrounding pine plantation matrix and the continuous intact native Eucalyptus forest controls. 3. We found sexually dimorphic morphological changes in response to the experimental treatments. Males increased in size, had larger legs and had smaller interocular widths in the matrix in both the short and long terms. Conversely, females became comparatively smaller and had increased interocular widths in the same treatments. Effects in the fragments were similar to those in the matrix, but exhibited more uncertainty. 4. Our results demonstrate that species can show morphological change in response to environmental change over very short time periods. We demonstrate that using both population and morphological data allows stronger inferences about the mechanisms behind species responses to environmental change. © 2017 The Royal Entomological Society
- Authors: Evans, Maldwyn , Banks, Sam , Barton, Philip , Davies, Kendi , Driscoll, Don
- Date: 2018
- Type: Text , Journal article
- Relation: Ecological Entomology Vol. 43, no. 3 (2018), p. 282-293
- Full Text:
- Reviewed:
- Description: 1. Habitat fragmentation and transformation are key drivers of species declines in landscapes. Most of the current understanding of species' responses to environmental change originates from studies of populations and communities. However, phenotypic variation offers another key aspect of species responses and could provide additional insights into the functional drivers of population change. 2. The goal of this study was to address this gap by exploring the morphological changes of a species of carabid beetle (Notonomus resplendens) with a known population response to the Wog Wog Habitat Fragmentation Experiment in Australia. We measured morphological traits associated with body size, head width, and dispersal ability. We quantified patterns of morphological variation over time and between native Eucalyptus forest fragments and the surrounding pine plantation matrix and the continuous intact native Eucalyptus forest controls. 3. We found sexually dimorphic morphological changes in response to the experimental treatments. Males increased in size, had larger legs and had smaller interocular widths in the matrix in both the short and long terms. Conversely, females became comparatively smaller and had increased interocular widths in the same treatments. Effects in the fragments were similar to those in the matrix, but exhibited more uncertainty. 4. Our results demonstrate that species can show morphological change in response to environmental change over very short time periods. We demonstrate that using both population and morphological data allows stronger inferences about the mechanisms behind species responses to environmental change. © 2017 The Royal Entomological Society
- Evans, Maldwyn, Cunningham, Saul, Gibb, Heloise, Manning, Adrian, Barton, Philip
- Authors: Evans, Maldwyn , Cunningham, Saul , Gibb, Heloise , Manning, Adrian , Barton, Philip
- Date: 2019
- Type: Text , Journal article
- Relation: Ecological Indicators Vol. 104, no. (2019), p. 209-218
- Full Text: false
- Reviewed:
- Description: Ecosystem restoration can play a vital role in conserving biodiversity, but its effectiveness can be difficult to assess for hyperdiverse biota such as insects. Species traits of insects can be used to understand their functional responses to restoration, but their use often requires considerable effort, and few studies have examined what additional insight can be gained from this approach. We used a spatially and temporally controlled restoration experiment to examine beetle species, grouped by flight ability, family membership and feeding guild, as indicators of ecosystem functional change. We tested for the effects of reduced vertebrate grazing on beetle assemblages sampled from two different microhabitats (next to log and in open ground)one year prior and two years after a vertebrate grazing treatment was applied. We compared the responses of the different beetle functional groupings, and then related these to the effort involved in employing these indicators. We found that beetle species traits gave several functional insights into their responses to reduced grazing, including responses to changes in vegetation structure and biomass. Species richness indicators and abundance indicators of beetle functional groups showed similar responses in many cases, whereas biomass indicators gave additional insights related to the extra biomass of vegetation and detritus resulting from the reduction in grazing. We found that most results were revealed by using family groups as indicators for functional change. This is because the traits that often define beetle families, such as size, flight ability and feeding guilds each have distinctive functional roles, allowing a link from family to function, and supporting the idea that phylogeny is often a useful shortcut to species ecology. We conclude that in our study system, the least-cost approach to identifying functional responses of beetles to reduced vertebrate grazing, and possibly other restoration actions, is to use abundance indicators of the most common family groups. © 2019 Elsevier Ltd
Cross-taxonomic surrogates for biodiversity conservation in human-modified landscapes – A multi-taxa approach
- Yong, Ding, Barton, Philip, Ikin, Karen, Evans, Maldwyn, Crane, Mason
- Authors: Yong, Ding , Barton, Philip , Ikin, Karen , Evans, Maldwyn , Crane, Mason
- Date: 2018
- Type: Text , Journal article
- Relation: Biological Conservation Vol. 224, no. (2018), p. 336-346
- Full Text:
- Reviewed:
- Description: Cross-taxonomic surrogates are often used in conservation planning because inventorying large suites of taxa is either not feasible or too costly. However, cross-taxonomic surrogates are seldom tested rigorously using both correlational and representation-based approaches at the spatial scales at which conservation management occurs. Here, we evaluated the effectiveness of five ecologically contrasting taxa (birds, herpetofauna, wild bees, beetles, trees) as cross-taxonomic surrogates in native woodland patches within a heavily modified, farming and plantation-dominated landscape. We first compared species richness and compositional heterogeneity across taxa before testing for cross-taxonomic congruence using a correlative approach. We then quantified how well each taxon incidentally represented other taxa in their best patch sets, and the costs of doing so using a complementarity-based approach. We found significant pairwise associations between some taxa (birds, bees), but no single taxon was strongly correlated with all other taxa. Woodland patch sets prioritised for beetles represented other taxa best, followed by birds, but were the costliest and required the largest amount of woodland. This contrasted with patch sets prioritised for wild bees or herpetofauna, which achieved higher representation of other taxa at lower costs. Our study highlighted the influence of taxon-specific patterns of diversity and heterogeneity on how remnant vegetation patches should be prioritised for conservation, a consideration not immediately obvious in correlative analyses of surrogacy. Second, taxa that are not the most speciose (e.g. wild bees) can be efficient surrogates, achieving higher incidental representation for other taxa at lower costs. Thus, while species-rich taxa are ideal as surrogates for prioritising conservation, conservation planners should not overlook the potential of less speciose taxa such as bees, while considering the cost-effectiveness of surveying multiple different taxa. © 2018. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton" is provided in this record**
- Authors: Yong, Ding , Barton, Philip , Ikin, Karen , Evans, Maldwyn , Crane, Mason
- Date: 2018
- Type: Text , Journal article
- Relation: Biological Conservation Vol. 224, no. (2018), p. 336-346
- Full Text:
- Reviewed:
- Description: Cross-taxonomic surrogates are often used in conservation planning because inventorying large suites of taxa is either not feasible or too costly. However, cross-taxonomic surrogates are seldom tested rigorously using both correlational and representation-based approaches at the spatial scales at which conservation management occurs. Here, we evaluated the effectiveness of five ecologically contrasting taxa (birds, herpetofauna, wild bees, beetles, trees) as cross-taxonomic surrogates in native woodland patches within a heavily modified, farming and plantation-dominated landscape. We first compared species richness and compositional heterogeneity across taxa before testing for cross-taxonomic congruence using a correlative approach. We then quantified how well each taxon incidentally represented other taxa in their best patch sets, and the costs of doing so using a complementarity-based approach. We found significant pairwise associations between some taxa (birds, bees), but no single taxon was strongly correlated with all other taxa. Woodland patch sets prioritised for beetles represented other taxa best, followed by birds, but were the costliest and required the largest amount of woodland. This contrasted with patch sets prioritised for wild bees or herpetofauna, which achieved higher representation of other taxa at lower costs. Our study highlighted the influence of taxon-specific patterns of diversity and heterogeneity on how remnant vegetation patches should be prioritised for conservation, a consideration not immediately obvious in correlative analyses of surrogacy. Second, taxa that are not the most speciose (e.g. wild bees) can be efficient surrogates, achieving higher incidental representation for other taxa at lower costs. Thus, while species-rich taxa are ideal as surrogates for prioritising conservation, conservation planners should not overlook the potential of less speciose taxa such as bees, while considering the cost-effectiveness of surveying multiple different taxa. © 2018. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton" is provided in this record**
Disentangling the effects of farmland use, habitat edges, and vegetation structure on ground beetle morphological traits
- Ng, Katherina, Barton, Philip, Blanchard, Wade, Evans, Maldwyn, Lindenmayer, David
- Authors: Ng, Katherina , Barton, Philip , Blanchard, Wade , Evans, Maldwyn , Lindenmayer, David
- Date: 2018
- Type: Text , Journal article
- Relation: Oecologia Vol. 188, no. 3 (2018), p. 645-657
- Full Text:
- Reviewed:
- Description: Land-use change due to agriculture has a major influence on arthropod biodiversity, and may influence species differently depending on their traits. It is unclear how species traits vary across different land uses and their edges, with most studies focussing on single habitat types and overlooking edge effects. We examined variation in morphological traits of carabid beetles (Coleoptera:Carabidae) on both sides of edges between woodlands and four adjoining, but contrasting farmland uses in an agricultural landscape. We asked: (1) how do traits differ between woodlands and different adjoining farmland uses (crop, fallow, restoration planting, and woody debris applied over crop), and do effects depend on increasing distances from the farmland–woodland edge? (2) Does vegetation structure explain observed effects of adjoining farmland use and edge effects on these traits? We found that carabid communities varied in body size and shape, including traits associated with diet, robustness, and visual ability. Smaller sized species were associated with woodlands and larger sized species with farmlands. Farmland use further influenced these associations, where woodlands adjoining plantings supported smaller species, while fallows and crops supported larger species. Vegetation structure significantly influenced body size, flying ability, and body shape, and helped explain the effects of farmland use and distance from edges on body size. We highlight the important role of vegetation structure, farmland use, and edge effects in filtering the morphological traits of carabid assemblages across a highly modified agricultural landscape. Our findings suggest that farmland management can influence body size and dispersal-related traits in farmland and adjacent native vegetation. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- Authors: Ng, Katherina , Barton, Philip , Blanchard, Wade , Evans, Maldwyn , Lindenmayer, David
- Date: 2018
- Type: Text , Journal article
- Relation: Oecologia Vol. 188, no. 3 (2018), p. 645-657
- Full Text:
- Reviewed:
- Description: Land-use change due to agriculture has a major influence on arthropod biodiversity, and may influence species differently depending on their traits. It is unclear how species traits vary across different land uses and their edges, with most studies focussing on single habitat types and overlooking edge effects. We examined variation in morphological traits of carabid beetles (Coleoptera:Carabidae) on both sides of edges between woodlands and four adjoining, but contrasting farmland uses in an agricultural landscape. We asked: (1) how do traits differ between woodlands and different adjoining farmland uses (crop, fallow, restoration planting, and woody debris applied over crop), and do effects depend on increasing distances from the farmland–woodland edge? (2) Does vegetation structure explain observed effects of adjoining farmland use and edge effects on these traits? We found that carabid communities varied in body size and shape, including traits associated with diet, robustness, and visual ability. Smaller sized species were associated with woodlands and larger sized species with farmlands. Farmland use further influenced these associations, where woodlands adjoining plantings supported smaller species, while fallows and crops supported larger species. Vegetation structure significantly influenced body size, flying ability, and body shape, and helped explain the effects of farmland use and distance from edges on body size. We highlight the important role of vegetation structure, farmland use, and edge effects in filtering the morphological traits of carabid assemblages across a highly modified agricultural landscape. Our findings suggest that farmland management can influence body size and dispersal-related traits in farmland and adjacent native vegetation. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
Dynamic soil nutrient and moisture changes under decomposing vertebrate carcasses
- Quaggiotto, Maria, Evans, Maldwyn, Higgins, Andrew, Strong, Craig, Barton, Philip
- Authors: Quaggiotto, Maria , Evans, Maldwyn , Higgins, Andrew , Strong, Craig , Barton, Philip
- Date: 2019
- Type: Text , Journal article
- Relation: Biogeochemistry Vol. 146, no. 1 (2019), p. 71-82
- Full Text: false
- Reviewed:
- Description: The decomposition of animal carcasses contributes to nutrient recycling in ecosystems worldwide, including by delivering nutrients to soil. Although several studies have characterised changes in soil chemistry occurring under carcasses, many ecological studies have occurred over extended post-mortem intervals and fine-scale temporal changes in physicochemical conditions are poorly understood. We examined changes in a suite of soil physicochemical properties occurring under decomposing rabbit carcasses during summer in a grassland ecosystem. We found that carcasses lost over 90% of their starting mass and reached dry decay and skeletonization after 20 days of decomposition. Carcass temperatures were up to 15 °C higher than ambient temperatures during the active decay stage (days 3 and 5) of decomposition. Soil moisture also increased by day 4, and this was matched with a simultaneous increase in total nitrogen and ammonium, as well increases in pH and electrical conductivity. Whereas these measures remained relatively stable as decay progressed, we found total phosphorus and phosphate continued to increase to day 20. The contrasting dynamics of N and P reflect the initial nutrient and fluid input during the rapid decay of soft tissues and intense activity of fly larvae, and the subsequent dry decay and exposure of skeletal components. Our study provides new information about the fine-scale timing of nutrient inputs and moisture and temperature changes occurring at the carcass/soil interface. © 2019, Springer Nature Switzerland AG.
Ecological processes associated with different animal taxa in urban environments
- Evans, Maldwyn, Barton, Philip, Westgate, Martin, Soga, Masashi, Fujita, Go, Miyashita, Tadashi
- Authors: Evans, Maldwyn , Barton, Philip , Westgate, Martin , Soga, Masashi , Fujita, Go , Miyashita, Tadashi
- Date: 2021
- Type: Text , Journal article
- Relation: Ecosphere Vol. 12, no. 8 (2021), p.
- Full Text:
- Reviewed:
- Description: Urbanization is increasing globally with wide-ranging consequences for biodiversity and the ecological processes it performs. Yet knowledge of the range of ecological processes supported by biodiversity in urban environments, and the different taxa that perform these processes is poorly understood. We used a text-analysis approach to identify the research trends and gaps in knowledge in the literature on ecological processes provided by animals in urban environments. We found a divide in urban ecological processes research that grouped studies into those with an explicit link to ecological processes and those that focused on biodiversity and made an implicit link to ecological processes. We also found that the dominant taxa in urban ecological processes research were insects, which has more than twice as many studies as birds or mammals, potentially due to their recognized and explicit link to key processes and services (e.g., pollination, pollution biomonitoring) and disservices (e.g., pests, disease transmission). We found a further split between terrestrial and aquatic studies, with urban aquatic studies also declining in relative prevalence over the last 20 yr. To consolidate and advance research on ecological processes in urban environments, we suggest it will be important to bridge the divide between studies on explicit services and others on more general biodiversity. This might be achieved by placing greater focus on the processes provided by non-insect taxa, and by integrating aquatic and terrestrial perspectives. © 2021 The Authors.
- Authors: Evans, Maldwyn , Barton, Philip , Westgate, Martin , Soga, Masashi , Fujita, Go , Miyashita, Tadashi
- Date: 2021
- Type: Text , Journal article
- Relation: Ecosphere Vol. 12, no. 8 (2021), p.
- Full Text:
- Reviewed:
- Description: Urbanization is increasing globally with wide-ranging consequences for biodiversity and the ecological processes it performs. Yet knowledge of the range of ecological processes supported by biodiversity in urban environments, and the different taxa that perform these processes is poorly understood. We used a text-analysis approach to identify the research trends and gaps in knowledge in the literature on ecological processes provided by animals in urban environments. We found a divide in urban ecological processes research that grouped studies into those with an explicit link to ecological processes and those that focused on biodiversity and made an implicit link to ecological processes. We also found that the dominant taxa in urban ecological processes research were insects, which has more than twice as many studies as birds or mammals, potentially due to their recognized and explicit link to key processes and services (e.g., pollination, pollution biomonitoring) and disservices (e.g., pests, disease transmission). We found a further split between terrestrial and aquatic studies, with urban aquatic studies also declining in relative prevalence over the last 20 yr. To consolidate and advance research on ecological processes in urban environments, we suggest it will be important to bridge the divide between studies on explicit services and others on more general biodiversity. This might be achieved by placing greater focus on the processes provided by non-insect taxa, and by integrating aquatic and terrestrial perspectives. © 2021 The Authors.
Effects of digging by a native and introduced ecosystem engineer on soil physical and chemical properties in temperate grassy woodland
- Ross, Catherine, Munro, Nicola, Barton, Philip, Evans, Maldwyn, Gillen, John
- Authors: Ross, Catherine , Munro, Nicola , Barton, Philip , Evans, Maldwyn , Gillen, John
- Date: 2019
- Type: Text , Journal article
- Relation: PeerJ Vol. 2019, no. 8 (2019), p.
- Full Text:
- Reviewed:
- Description: Temperate grasslands and woodlands are the focus of extensive restoration efforts worldwide. Reintroduction of locally extinct soil-foraging and burrowing animals has been suggested as a means to restore soil function in these ecosystems. Yet little is known about the physical and chemical effects of digging on soil over time and how these effects differ between species of digging animal, vegetation types or ecosystems. We compared foraging pits of a native reintroduced marsupial, the eastern bettong (Bettongia gaimardi) and that of the exotic European rabbit (Oryctolagus cuniculus). We simulated pits of these animals and measured pit dimensions and soil chemical properties over a period of 2 years. We showed that bettong and rabbit pits differed in their morphology and longevity, and that pits had a strong moderating effect on soil surface temperatures. Over 75% of the simulated pits were still visible after 2 years, and bettong pits infilled faster than rabbit pits. Bettong pits reduced diurnal temperature range by up to 25 ° C compared to the soil surface. We did not find any effects of digging on soil chemistry that were consistent across vegetation types, between bettong and rabbit pits, and with time since digging, which is contrary to studies conducted in arid biomes. Our findings show that animal foraging pits in temperate ecosystems cause physical alteration of the soil surface and microclimatic conditions rather than nutrient changes often observed in arid areas. © 2019 Ross et al. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- Authors: Ross, Catherine , Munro, Nicola , Barton, Philip , Evans, Maldwyn , Gillen, John
- Date: 2019
- Type: Text , Journal article
- Relation: PeerJ Vol. 2019, no. 8 (2019), p.
- Full Text:
- Reviewed:
- Description: Temperate grasslands and woodlands are the focus of extensive restoration efforts worldwide. Reintroduction of locally extinct soil-foraging and burrowing animals has been suggested as a means to restore soil function in these ecosystems. Yet little is known about the physical and chemical effects of digging on soil over time and how these effects differ between species of digging animal, vegetation types or ecosystems. We compared foraging pits of a native reintroduced marsupial, the eastern bettong (Bettongia gaimardi) and that of the exotic European rabbit (Oryctolagus cuniculus). We simulated pits of these animals and measured pit dimensions and soil chemical properties over a period of 2 years. We showed that bettong and rabbit pits differed in their morphology and longevity, and that pits had a strong moderating effect on soil surface temperatures. Over 75% of the simulated pits were still visible after 2 years, and bettong pits infilled faster than rabbit pits. Bettong pits reduced diurnal temperature range by up to 25 ° C compared to the soil surface. We did not find any effects of digging on soil chemistry that were consistent across vegetation types, between bettong and rabbit pits, and with time since digging, which is contrary to studies conducted in arid biomes. Our findings show that animal foraging pits in temperate ecosystems cause physical alteration of the soil surface and microclimatic conditions rather than nutrient changes often observed in arid areas. © 2019 Ross et al. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
Environmental and spatial drivers of spider diversity at contrasting microhabitats
- Barton, Philip, Evans, Maldwyn, Foster, Claire, Cunningham, Saul, Manning, Adrian
- Authors: Barton, Philip , Evans, Maldwyn , Foster, Claire , Cunningham, Saul , Manning, Adrian
- Date: 2017
- Type: Text , Journal article
- Relation: Austral Ecology Vol. 42, no. 6 (2017), p. 700-710
- Full Text:
- Reviewed:
- Description: The relative importance of environmental and spatial drivers of animal diversity varies across scales, but identifying these scales can be difficult if a sampling design does not match the scale of the target organisms' interaction with their habitat. In this study, we quantify and compare the effects of environmental variation and spatial proximity on ground-dwelling spider assemblages sampled from three distinct microhabitat types (open grassland, logs, trees) that recur across structurally heterogeneous grassy woodlands. We used model selection and multivariate procedures to compare the effects of different environmental attributes and spatial proximity on spider assemblages at each microhabitat type. We found that species richness and assemblage composition differed among microhabitat types. Bare ground cover had a negative effect on spider richness under trees, but a positive effect on spider richness in open grassland. Turnover in spider assemblages from open grassland was correlated with environmental distance, but not geographic distance. By contrast, turnover in spiders at logs and trees was correlated with geographic distance, but not environmental distance. Our study suggests that spider assemblages from widespread and connected open grassland habitat were more affected by environmental than spatial gradients, whereas spiders at log and tree habitats were more affected by spatial distance among these discrete but recurring microhabitats. Deliberate selection and sampling of small-scale habitat features can provide robust information about the drivers of arthropod diversity and turnover in landscapes. © 2017 Ecological Society of Australia
- Authors: Barton, Philip , Evans, Maldwyn , Foster, Claire , Cunningham, Saul , Manning, Adrian
- Date: 2017
- Type: Text , Journal article
- Relation: Austral Ecology Vol. 42, no. 6 (2017), p. 700-710
- Full Text:
- Reviewed:
- Description: The relative importance of environmental and spatial drivers of animal diversity varies across scales, but identifying these scales can be difficult if a sampling design does not match the scale of the target organisms' interaction with their habitat. In this study, we quantify and compare the effects of environmental variation and spatial proximity on ground-dwelling spider assemblages sampled from three distinct microhabitat types (open grassland, logs, trees) that recur across structurally heterogeneous grassy woodlands. We used model selection and multivariate procedures to compare the effects of different environmental attributes and spatial proximity on spider assemblages at each microhabitat type. We found that species richness and assemblage composition differed among microhabitat types. Bare ground cover had a negative effect on spider richness under trees, but a positive effect on spider richness in open grassland. Turnover in spider assemblages from open grassland was correlated with environmental distance, but not geographic distance. By contrast, turnover in spiders at logs and trees was correlated with geographic distance, but not environmental distance. Our study suggests that spider assemblages from widespread and connected open grassland habitat were more affected by environmental than spatial gradients, whereas spiders at log and tree habitats were more affected by spatial distance among these discrete but recurring microhabitats. Deliberate selection and sampling of small-scale habitat features can provide robust information about the drivers of arthropod diversity and turnover in landscapes. © 2017 Ecological Society of Australia
Higher-taxon and functional group responses of ant and bird assemblages to livestock grazing : a test of an explicit surrogate concept
- Barton, Philip, Evans, Maldwyn, Sato, Chloe, O'Loughlin, Luke, Foster, Claire
- Authors: Barton, Philip , Evans, Maldwyn , Sato, Chloe , O'Loughlin, Luke , Foster, Claire
- Date: 2019
- Type: Text , Journal article
- Relation: Ecological Indicators Vol. 96, no. (2019), p. 458-465
- Full Text:
- Reviewed:
- Description: Biodiversity monitoring programs are routinely established to quantify changes in biotic communities in response to land management. Surrogacy is implicitly used in many such monitoring programs whereby the measurement of a component of biodiversity is used to infer responses of broader biodiversity. Yet rarely is this surrogacy validated by demonstrating that measured variables and the target variable of interest have matching responses to management treatments. Here we examined the responses of higher-taxon and functional groupings of ants and birds (our surrogate variables) two years after the implementation of experimental livestock grazing treatments, and compared these with the responses of total ant and bird species richness (our target variables) to the same treatments. We found significant and strong correlations between surrogate and target variables, but this did not predict corresponding similar response to treatments. For ants, we found that the genus Monomorium had a negative response to the grazing exclusion treatment, but there was no matching response of species richness, and so no surrogacy was identified. For birds, total species richness had a weak positive response to spring/summer grazing exclusion, and the abundance of honeyeaters (Meliphagidae) showed a similar positive response, suggesting surrogacy. Our study highlights that correlations among variables do not necessarily lead to surrogacy, and indeed that different sub-components of biotic assemblages can respond in ways that contrast with overall species richness. Careful assessment of the matched responses of surrogate and target variables to management can provide a simple and robust way to critically assess biodiversity surrogacy. © 2018 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- Authors: Barton, Philip , Evans, Maldwyn , Sato, Chloe , O'Loughlin, Luke , Foster, Claire
- Date: 2019
- Type: Text , Journal article
- Relation: Ecological Indicators Vol. 96, no. (2019), p. 458-465
- Full Text:
- Reviewed:
- Description: Biodiversity monitoring programs are routinely established to quantify changes in biotic communities in response to land management. Surrogacy is implicitly used in many such monitoring programs whereby the measurement of a component of biodiversity is used to infer responses of broader biodiversity. Yet rarely is this surrogacy validated by demonstrating that measured variables and the target variable of interest have matching responses to management treatments. Here we examined the responses of higher-taxon and functional groupings of ants and birds (our surrogate variables) two years after the implementation of experimental livestock grazing treatments, and compared these with the responses of total ant and bird species richness (our target variables) to the same treatments. We found significant and strong correlations between surrogate and target variables, but this did not predict corresponding similar response to treatments. For ants, we found that the genus Monomorium had a negative response to the grazing exclusion treatment, but there was no matching response of species richness, and so no surrogacy was identified. For birds, total species richness had a weak positive response to spring/summer grazing exclusion, and the abundance of honeyeaters (Meliphagidae) showed a similar positive response, suggesting surrogacy. Our study highlights that correlations among variables do not necessarily lead to surrogacy, and indeed that different sub-components of biotic assemblages can respond in ways that contrast with overall species richness. Careful assessment of the matched responses of surrogate and target variables to management can provide a simple and robust way to critically assess biodiversity surrogacy. © 2018 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
Insect biodiversity meets ecosystem function : differential effects of habitat and insects on carrion decomposition
- Barton, Philip, Evans, Maldwyn
- Authors: Barton, Philip , Evans, Maldwyn
- Date: 2017
- Type: Text , Journal article
- Relation: Ecological Entomology Vol. 42, no. 3 (2017), p. 364-374
- Full Text:
- Reviewed:
- Description: 1. Ecological processes are maintained in different environments by different species performing similar functional roles. Yet, little is known about the role of the environment in shaping insect biodiversity associated with a process that is ephemeral and patchy. 2. In this study, the mass loss of carrion in response to contrasting habitat types (grassland or tree) was quantified experimentally, as well as the presence, diversity and composition of insect assemblages. Differences in insect assemblages between these two habitats were also examined. 3. It was found that the presence of insects led to a doubling in mass loss, but that grassland or tree habitat type had no effect on this process. By contrast, habitat type had a significant effect on the composition of generalist ant and beetle assemblages, but not on specialist fly assemblages. Given the colonisation of insects, carrion mass loss was negatively associated with increasing evenness of fly assemblages and increasing ant abundance. Variation in fly assemblage composition was also found to correlate with variation in carrion mass loss. 4. This study highlights the major role of habitat type in shaping the composition of generalist insects at carrion, but the minor role in affecting specialist and highly vagile insects. This complements the authors' findings that insect colonisation of carrion was critical to accelerated mass loss, and that fly assemblages were responsible for variation in this process, regardless of habitat. The present study sheds new light on the contribution of insect biodiversity to decomposition in variable environments, with consequences for carrion food webs and nutrient cycling. © 2017 The Royal Entomological Society
- Authors: Barton, Philip , Evans, Maldwyn
- Date: 2017
- Type: Text , Journal article
- Relation: Ecological Entomology Vol. 42, no. 3 (2017), p. 364-374
- Full Text:
- Reviewed:
- Description: 1. Ecological processes are maintained in different environments by different species performing similar functional roles. Yet, little is known about the role of the environment in shaping insect biodiversity associated with a process that is ephemeral and patchy. 2. In this study, the mass loss of carrion in response to contrasting habitat types (grassland or tree) was quantified experimentally, as well as the presence, diversity and composition of insect assemblages. Differences in insect assemblages between these two habitats were also examined. 3. It was found that the presence of insects led to a doubling in mass loss, but that grassland or tree habitat type had no effect on this process. By contrast, habitat type had a significant effect on the composition of generalist ant and beetle assemblages, but not on specialist fly assemblages. Given the colonisation of insects, carrion mass loss was negatively associated with increasing evenness of fly assemblages and increasing ant abundance. Variation in fly assemblage composition was also found to correlate with variation in carrion mass loss. 4. This study highlights the major role of habitat type in shaping the composition of generalist insects at carrion, but the minor role in affecting specialist and highly vagile insects. This complements the authors' findings that insect colonisation of carrion was critical to accelerated mass loss, and that fly assemblages were responsible for variation in this process, regardless of habitat. The present study sheds new light on the contribution of insect biodiversity to decomposition in variable environments, with consequences for carrion food webs and nutrient cycling. © 2017 The Royal Entomological Society
Is resource change a useful predictor of carrion insect succession on pigs and humans?
- Dawson, Blake, Wallman, James, Evans, Maldwyn, Barton, Philip
- Authors: Dawson, Blake , Wallman, James , Evans, Maldwyn , Barton, Philip
- Date: 2021
- Type: Text , Journal article
- Relation: Journal of Medical Entomology Vol. 58, no. 6 (2021), p. 2228-2235
- Full Text:
- Reviewed:
- Description: Carrion is a dynamic and nutrient-rich resource that attracts numerous insect species that undergo succession due to the rapid change in the carrion resource. Despite this process being well-understood, few studies have examined resource change as a driver of carrion insect succession, and instead have focused on the effects of time per se, or on coarse, qualitative measures such as decay stage. Here we report on three field succession experiments using pig carcasses and human cadavers encompassing two winters and one summer. We quantified the effects of resource change (measured as total body score, TBS), carrion type, initial carrion mass, ambient temperature, and season on insect species richness and community composition. We found that all variables had an effect on different taxonomic or trophic components of the insect community composition, with the exception of initial carrion mass which had no effect. We found significant positive effects of TBS on beetle species richness and composition, while fly species richness was not significantly affected by TBS, but was by ambient temperature. TBS had a significant positive effect on all trophic groups, while ambient temperature also had a significant positive effect on the necrophages and predator/parasitoids. Our study indicates that resource change, as indicated by TBS, is an important driver of carrion insect species turnover and succession on carrion, and that TBS can provide information about insect ecological patterns on carrion that other temporal measures of change cannot.
- Authors: Dawson, Blake , Wallman, James , Evans, Maldwyn , Barton, Philip
- Date: 2021
- Type: Text , Journal article
- Relation: Journal of Medical Entomology Vol. 58, no. 6 (2021), p. 2228-2235
- Full Text:
- Reviewed:
- Description: Carrion is a dynamic and nutrient-rich resource that attracts numerous insect species that undergo succession due to the rapid change in the carrion resource. Despite this process being well-understood, few studies have examined resource change as a driver of carrion insect succession, and instead have focused on the effects of time per se, or on coarse, qualitative measures such as decay stage. Here we report on three field succession experiments using pig carcasses and human cadavers encompassing two winters and one summer. We quantified the effects of resource change (measured as total body score, TBS), carrion type, initial carrion mass, ambient temperature, and season on insect species richness and community composition. We found that all variables had an effect on different taxonomic or trophic components of the insect community composition, with the exception of initial carrion mass which had no effect. We found significant positive effects of TBS on beetle species richness and composition, while fly species richness was not significantly affected by TBS, but was by ambient temperature. TBS had a significant positive effect on all trophic groups, while ambient temperature also had a significant positive effect on the necrophages and predator/parasitoids. Our study indicates that resource change, as indicated by TBS, is an important driver of carrion insect species turnover and succession on carrion, and that TBS can provide information about insect ecological patterns on carrion that other temporal measures of change cannot.
Necrophilous insect dynamics at small vertebrate carrion in a temperate eucalypt woodland
- Barton, Philip, Evans, Maldwyn, Pechal, Jennifer, Benbow, M. Eric
- Authors: Barton, Philip , Evans, Maldwyn , Pechal, Jennifer , Benbow, M. Eric
- Date: 2017
- Type: Text , Journal article
- Relation: Journal of Medical Entomology Vol. 54, no. 4 (2017), p. 964-973
- Full Text: false
- Reviewed:
- Description: Insects associated with carrion are critical to the decomposition process and nutrient cycling in ecosystems. Yet the communities of insects associated with carrion vary between locations, and detailed case studies are necessary for identifying differences and similarities among contrasting habitats. In this study, we examined temporal changes in the crawling insect community collected from rabbit carcasses placed in contrasting grassland and tree habitats in southeastern Australia. We collected 18,400 adult insects, including 22 species of fly, 57 species of beetle, and 37 species of ant. We found significant effects of habitat type and time, but not their interaction, on the composition of the entire insect community. Several ant species showed early and rapid colonization and highest abundances during early stages of decay, including Iridomyrmex purpureus (Smith, 1858) under trees, and Iridomyrmex rufoniger (Lowne, 1865) and Rhytidoponera metallica (Smith, 1858) in grassland. We found that most fly species showed highest abundance during active decay, but Chrysomya varipes (Macquart 1851) was more abundant under trees than in grassland during this time. Beetles peaked during active or advanced decay stages, with Saprinus and Omorgus the most abundant genera. Our study demonstrates that strong replication of contrasting environmental treatments can reveal new information on habitat preferences of important carrion insect species. The numerical dominance of ants early in decomposition has implications for insect community structure via potential competitive interactions with flies, and should be more rigorously examined in future carrion studies. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Nutrient and moisture transfer to insect consumers and soil during vertebrate decomposition
- Barton, Philip, Strong, Craig, Evans, Maldwyn, Higgins, Andrew, Quaggiotto, Maria
- Authors: Barton, Philip , Strong, Craig , Evans, Maldwyn , Higgins, Andrew , Quaggiotto, Maria
- Date: 2019
- Type: Text , Journal article
- Relation: Food Webs Vol. 18, no. (2019), p.
- Full Text: false
- Reviewed:
- Description: Decomposition of organic matter leads to the redistribution of nutrients to organisms and the environment. Yet knowledge of this process has focused largely on plant-derived organic matter, with little known about relative quantities of nutrients and moisture transferred from decomposing animal remains to insect consumers and soil. We used a replicated and spatially blocked experiment to quantify the moisture, carbon, nitrogen, and phosphorous content of rabbit carcasses, maggot consumers, and soil over 20 days of decomposition. We found that maggot biomass reached 22% of the fresh rabbit carcass, or 39% of the consumable soft tissues. Maggots were comprised of 68% moisture, and their dry mass was comprised of 25% carbon, 4.9% nitrogen, and 0.8% phosphorous. Soils accumulated approximately 12.9% of the total carcass moisture, but only 0.7% of the carcass dry mass. The largest quantity of carcass mass loss was attributable to evaporation of moisture to the atmosphere (45%). Approximately 9% of the initial carcass mass was left as unconsumed remains. Our study provides estimates of the quantities of nutrients moving from vertebrate carcasses to insect consumers and soil. This knowledge is critical to scaling up the effects of carcasses and to developing our understanding of their role in biogeochemical cycling in ecosystems. © 2018 Elsevier Inc.
Outfoxing the fox : effect of prey odor on fox behavior in a pastoral landscape
- Andrewartha, Tim, Evans, Maldwyn, Batson, William, Manning, Adrian, Barton, Philip
- Authors: Andrewartha, Tim , Evans, Maldwyn , Batson, William , Manning, Adrian , Barton, Philip
- Date: 2021
- Type: Text , Journal article
- Relation: Conservation Science and Practice Vol. 3, no. 12 (2021), p.
- Full Text:
- Reviewed:
- Description: Invasive mammalian predators have had a devastating effect on native species globally. The European red fox (Vulpes vulpes) is one such species where it has been introduced in Australia. A novel but unexplored tactic to reduce the impact of mammalian predators is the use of unrewarded prey odors to undermine the effectiveness of olfactory hunting behavior. To test the viability of unrewarded prey odors in an applied setting we investigated how foxes responded to the odors of three different prey species. We used the odors of two locally extinct native Australian marsupials; the eastern quoll (a smaller carnivore) and eastern bettong (a fungivore), and the European rabbit, an introduced herbivore. Conducting our research over a period of 3 weeks in a pastoral environment in South-eastern Australia, we used video observations of foxes' behaviors, as they encountered the different odors. We found a reduction in the number of fox visits to bettong odors in the third week. In contrast, we observed a sustained number of visits to rabbit odors. Foxes also spent more time investigating rabbit odors and displayed longer durations of vigilance behavior at quoll odors. Our results support the hypothesis that the exposure of wild foxes to unrewarded odors of novel prey species can reduce their interest in these odors, which might translate to a reduction in predation pressure. Our results also suggest, however, that olfactory pre-exposure may not be as effective at reducing fox interest in a competitor species' odor. © 2021 The Authors. Conservation Science and Practice published by Wiley Periodicals LLC. on behalf of Society for Conservation Biology
- Authors: Andrewartha, Tim , Evans, Maldwyn , Batson, William , Manning, Adrian , Barton, Philip
- Date: 2021
- Type: Text , Journal article
- Relation: Conservation Science and Practice Vol. 3, no. 12 (2021), p.
- Full Text:
- Reviewed:
- Description: Invasive mammalian predators have had a devastating effect on native species globally. The European red fox (Vulpes vulpes) is one such species where it has been introduced in Australia. A novel but unexplored tactic to reduce the impact of mammalian predators is the use of unrewarded prey odors to undermine the effectiveness of olfactory hunting behavior. To test the viability of unrewarded prey odors in an applied setting we investigated how foxes responded to the odors of three different prey species. We used the odors of two locally extinct native Australian marsupials; the eastern quoll (a smaller carnivore) and eastern bettong (a fungivore), and the European rabbit, an introduced herbivore. Conducting our research over a period of 3 weeks in a pastoral environment in South-eastern Australia, we used video observations of foxes' behaviors, as they encountered the different odors. We found a reduction in the number of fox visits to bettong odors in the third week. In contrast, we observed a sustained number of visits to rabbit odors. Foxes also spent more time investigating rabbit odors and displayed longer durations of vigilance behavior at quoll odors. Our results support the hypothesis that the exposure of wild foxes to unrewarded odors of novel prey species can reduce their interest in these odors, which might translate to a reduction in predation pressure. Our results also suggest, however, that olfactory pre-exposure may not be as effective at reducing fox interest in a competitor species' odor. © 2021 The Authors. Conservation Science and Practice published by Wiley Periodicals LLC. on behalf of Society for Conservation Biology
Priority effects and density promote coexistence between the facultative predator Chrysomya rufifacies and its competitor Calliphora stygia
- Dawson, Blake, Wallman, James, Evans, Maldwyn, Butterworth, Nathan, Barton, Philip
- Authors: Dawson, Blake , Wallman, James , Evans, Maldwyn , Butterworth, Nathan , Barton, Philip
- Date: 2022
- Type: Text , Journal article
- Relation: Oecologia Vol. 199, no. 1 (2022), p. 181-191
- Full Text:
- Reviewed:
- Description: Highly competitive ephemeral resources like carrion tend to support much greater diversity relative to longer-lived resources. The coexistence of diverse communities on short-lived carrion is a delicate balance, maintained by several processes including competition. Despite this balance, few studies have investigated the effect of competition on carrion, limiting our understanding of how competition drives coexistence. We investigated how priority effects and larval density influence coexistence between two blowfly species, the facultative predator Chrysomya rufifacies and its competitor Calliphora stygia, which occupy broadly similar niches but differ in their ecological strategies for exploiting carrion. We examined how adult oviposition, larval survival, developmental duration, and adult fitness were affected by the presence of differently aged heterospecific larval masses, and how these measures varied under three larval densities. We found C. rufifacies larval survival was lowest in conspecific masses with low larval densities. In heterospecific masses, survival increased, particularly at high larval density, with priority effects having minimal effect, suggesting a dependency on collective exodigestion. For C. stygia, we found survival to be constant across larval densities in a conspecific mass. In heterospecific masses, survival decreased drastically when C. rufifacies arrived first, regardless of larval density, suggesting C. stygia is temporally constrained to avoid competition with C. rufifacies. Neither species appeared to completely outcompete the other, as they were either constrained by density requirements (C. rufifacies) or priority effects (C. stygia). Our results provide new mechanistic insights into the ecological processes allowing for coexistence on a competitively intense, ephemeral resource such as carrion. © 2022, The Author(s).
- Authors: Dawson, Blake , Wallman, James , Evans, Maldwyn , Butterworth, Nathan , Barton, Philip
- Date: 2022
- Type: Text , Journal article
- Relation: Oecologia Vol. 199, no. 1 (2022), p. 181-191
- Full Text:
- Reviewed:
- Description: Highly competitive ephemeral resources like carrion tend to support much greater diversity relative to longer-lived resources. The coexistence of diverse communities on short-lived carrion is a delicate balance, maintained by several processes including competition. Despite this balance, few studies have investigated the effect of competition on carrion, limiting our understanding of how competition drives coexistence. We investigated how priority effects and larval density influence coexistence between two blowfly species, the facultative predator Chrysomya rufifacies and its competitor Calliphora stygia, which occupy broadly similar niches but differ in their ecological strategies for exploiting carrion. We examined how adult oviposition, larval survival, developmental duration, and adult fitness were affected by the presence of differently aged heterospecific larval masses, and how these measures varied under three larval densities. We found C. rufifacies larval survival was lowest in conspecific masses with low larval densities. In heterospecific masses, survival increased, particularly at high larval density, with priority effects having minimal effect, suggesting a dependency on collective exodigestion. For C. stygia, we found survival to be constant across larval densities in a conspecific mass. In heterospecific masses, survival decreased drastically when C. rufifacies arrived first, regardless of larval density, suggesting C. stygia is temporally constrained to avoid competition with C. rufifacies. Neither species appeared to completely outcompete the other, as they were either constrained by density requirements (C. rufifacies) or priority effects (C. stygia). Our results provide new mechanistic insights into the ecological processes allowing for coexistence on a competitively intense, ephemeral resource such as carrion. © 2022, The Author(s).
Substantial long-term effects of carcass addition on soil and plants in a grassy eucalypt woodland
- Barton, Philip, McIntyre, Sue, Evans, Maldwyn, Bump, Joseph, Cunningham, Saul, Manning, Adrian
- Authors: Barton, Philip , McIntyre, Sue , Evans, Maldwyn , Bump, Joseph , Cunningham, Saul , Manning, Adrian
- Date: 2016
- Type: Text , Journal article
- Relation: Ecosphere Vol. 7, no. 10 (2016), p.
- Full Text:
- Reviewed:
- Description: The decomposition of large vertebrate carcasses generates small-scale disturbances characterized by changes in soil chemistry and new opportunities for plant establishment. Yet few studies have examined whether this effect is still evident several years after death, or has consequences for landscape-scale heterogeneity. We examined soil chemistry and plant species richness and composition at 12 kangaroo carcasses (~30 kg initial mass) five years after their initial placement. Each carcass was paired with a nearby "control" site for comparison. We found that soil phosphorus was eight times higher at carcasses than at control sites, but that nitrogen concentration was similar. We also found that plant composition was substantially different between each carcass and control pair, with 80% of carcasses dominated by exotic species (mostly weedy annuals). Notably, overall variability in plant species composition across carcass sites was not different from the variability at control sites, indicating that the colonization of carcasses by weedy species did not have a homogenizing effect on plant assemblages across our study landscape. Our study demonstrates that a localized effect of large vertebrate carcasses on soil and plants was still evident after five years, indicating a state shift in the soil-plant dynamics at a carcass site. However, the effect of carcasses on landscape-scale plant community heterogeneity was minimal because colonization was by weedy plants already present in the landscape. © 2016 Barton et al.
- Authors: Barton, Philip , McIntyre, Sue , Evans, Maldwyn , Bump, Joseph , Cunningham, Saul , Manning, Adrian
- Date: 2016
- Type: Text , Journal article
- Relation: Ecosphere Vol. 7, no. 10 (2016), p.
- Full Text:
- Reviewed:
- Description: The decomposition of large vertebrate carcasses generates small-scale disturbances characterized by changes in soil chemistry and new opportunities for plant establishment. Yet few studies have examined whether this effect is still evident several years after death, or has consequences for landscape-scale heterogeneity. We examined soil chemistry and plant species richness and composition at 12 kangaroo carcasses (~30 kg initial mass) five years after their initial placement. Each carcass was paired with a nearby "control" site for comparison. We found that soil phosphorus was eight times higher at carcasses than at control sites, but that nitrogen concentration was similar. We also found that plant composition was substantially different between each carcass and control pair, with 80% of carcasses dominated by exotic species (mostly weedy annuals). Notably, overall variability in plant species composition across carcass sites was not different from the variability at control sites, indicating that the colonization of carcasses by weedy species did not have a homogenizing effect on plant assemblages across our study landscape. Our study demonstrates that a localized effect of large vertebrate carcasses on soil and plants was still evident after five years, indicating a state shift in the soil-plant dynamics at a carcass site. However, the effect of carcasses on landscape-scale plant community heterogeneity was minimal because colonization was by weedy plants already present in the landscape. © 2016 Barton et al.
Towards quantifying carrion biomass in ecosystems
- Barton, Philip, Evans, Maldwyn, Foster, Claire, Pechal, Jennifer, Bump, Joseph
- Authors: Barton, Philip , Evans, Maldwyn , Foster, Claire , Pechal, Jennifer , Bump, Joseph
- Date: 2019
- Type: Text , Journal article , Review
- Relation: Trends in Ecology and Evolution Vol. 34, no. 10 (2019), p. 950-961
- Full Text:
- Reviewed:
- Description: The decomposition of animal biomass (carrion) contributes to the recycling of energy and nutrients through ecosystems. Whereas the role of plant decomposition in ecosystems is broadly recognised, the significance of carrion to ecosystem functioning remains poorly understood. Quantitative data on carrion biomass are lacking and there is no clear pathway towards improved knowledge in this area. Here, we present a framework to show how quantities derived from individual carcasses can be scaled up using population metrics, allowing for comparisons among ecosystems and other forms of biomass. Our framework facilitates the generation of new data that is critical to building a quantitative understanding of the contribution of carrion to trophic processes and ecosystem stocks and flows. © 2019 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
- Authors: Barton, Philip , Evans, Maldwyn , Foster, Claire , Pechal, Jennifer , Bump, Joseph
- Date: 2019
- Type: Text , Journal article , Review
- Relation: Trends in Ecology and Evolution Vol. 34, no. 10 (2019), p. 950-961
- Full Text:
- Reviewed:
- Description: The decomposition of animal biomass (carrion) contributes to the recycling of energy and nutrients through ecosystems. Whereas the role of plant decomposition in ecosystems is broadly recognised, the significance of carrion to ecosystem functioning remains poorly understood. Quantitative data on carrion biomass are lacking and there is no clear pathway towards improved knowledge in this area. Here, we present a framework to show how quantities derived from individual carcasses can be scaled up using population metrics, allowing for comparisons among ecosystems and other forms of biomass. Our framework facilitates the generation of new data that is critical to building a quantitative understanding of the contribution of carrion to trophic processes and ecosystem stocks and flows. © 2019 Elsevier Ltd. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Philip Barton” is provided in this record**
What's hot and what's not – Identifying publication trends in insect ecology
- Andrew, Nigel, Evans, Maldwyn, Svejcar, Lauren, Prendegast, Kit, Barton, Philip
- Authors: Andrew, Nigel , Evans, Maldwyn , Svejcar, Lauren , Prendegast, Kit , Barton, Philip
- Date: 2022
- Type: Text , Journal article , Review
- Relation: Austral Ecology Vol. 47, no. 1 (2022), p. 5-16
- Full Text: false
- Reviewed:
- Description: Research disciplines in science have historically developed in silos but are increasingly multidisciplinary. Here, we assessed how the insect ecology literature published in ecological and entomological journals has developed over the last 20 years and which topics have crossed discipline boundaries. We used structural topic modelling to assess research trends from 34 304 articles published in six ecology journals and six entomology journals between 2000 and 2020. We then identified and compared topics that emerged from the entire body of literature, or corpus, with topics that emerged from a subsection of articles that focused only on insects (insect corpus). We found that, within the entire corpus, topics on ‘Community ecology’, ‘Traits, life history & physiology’ and ‘Ecological methods & theory’ became more prevalent over time (hot topics), whereas ‘Population modelling’, ‘Insect development’, ‘Reproduction & ontogeny’ and ‘Plant growth’ declined in prevalence over the 20 years we surveyed (cold topics). In the insect corpus, we found that hot topics included ‘Thermal tolerance’ and ‘Disease vectors’, whereas cold topics included ‘Herbivore phenology’, ‘Insect-plant interactions’ and ‘Parasitoids and parasites’. ‘Landscape ecology’ was a growth topic area for both corpora. Our findings suggest that insect-related research is a major component of the broader ecological discipline, and there are topics in ecology where insect research aligns with general ecological trends. However, specific topics unique to the insect corpora – such as insect taxonomy – are fundamental to both insect and ecology research. © 2021 Ecological Society of Australia
- «
- ‹
- 1
- ›
- »