121 Telomere attrition is attenuated in ultra-marathon runners
- Denham, Joshua, Nankervis, Scott, Debiec, Radek, Harvey, Jack, Pascoe, Deborah, Marques, Francine, O’Brien, Brendan, Zukowska-Szczechowska, Ewa, Tomaszewski, Maciej, Charchar, Fadi
- Authors: Denham, Joshua , Nankervis, Scott , Debiec, Radek , Harvey, Jack , Pascoe, Deborah , Marques, Francine , O’Brien, Brendan , Zukowska-Szczechowska, Ewa , Tomaszewski, Maciej , Charchar, Fadi
- Date: 2012
- Type: Text , Journal article
- Relation: Journal of Hypertension Vol. 30, no. e-Supplement (September 2012), p. e37
- Full Text: false
- Reviewed:
- Description: Background: Leukocyte telomere length is a marker of biological ageing and its shortening is associated with cardiovascular disease. Engagement in regular moderate-intensity physical activity is a recognised method of cardiovascular disease prevention. However, it is not clear whether repeated exposure to ultra-strenuous physical exercise is beneficial long-term and whether it may attenuate biological ageing. Methods: We compared leukocyte telomere length in context of inflammation and endothelial dysfunction between 67 male ultra-marathon runners and 67 age-, sex- and BMI-matched apparently healthy controls. Genomic DNA was extracted from peripheral blood and leukocyte telomere length was measured by quantitative polymerase chain reaction assays. Adhesion molecules (sICAM-1, sE-selectin) and inflammatory markers (IL-6, C-reactive protein) concentrations were measured in 67 ultra-marathon runners by quantitative sandwich enzyme immunoassay technique, high-sensitive immunoassay and ultra-sensitive double antibody sandwich ELISA, respectively. Results: Adjusted (for age, BMI, blood pressure and lipids) leukocyte telomere length was approximately 13.8% greater in the ultra-marathon runners than in the controls (P<0.001). This translates into approximately 32.9 years difference in age-related telomere length attrition. There was a strong negative linear correlation between sICAM-1 and leukocyte telomere length in the ultra-marathon runners (r=-0.33; P=0.007) and this association retained its statistical significance after adjustment for age, BMI, blood pressure and lipids in multiple regression (P=0.026). Conclusion: Prolonged, intense physical exercise may attenuate cellular ageing possibly through a protective effect on endothelial function.
- Description: C1
Aortic augmentation index in endurance athletes : A role for cardiorespiratory fitness
- Denham, Joshua, Brown, Nicholas, Tomaszewski, Maciej, Williams, Bryan, O’Brien, Brendan, Charchar, Fadi
- Authors: Denham, Joshua , Brown, Nicholas , Tomaszewski, Maciej , Williams, Bryan , O’Brien, Brendan , Charchar, Fadi
- Date: 2016
- Type: Text , Journal article
- Relation: European Journal of Applied Physiology Vol. 116, no. 8 (2016), p. 1537-1544
- Relation: http://purl.org/au-research/grants/nhmrc/1009490
- Full Text: false
- Reviewed:
- Description: Purpose: Endurance exercise improves cardiovascular health and reduces mortality risk. Augmentation index (AIx) reflects adverse loading exerted on the heart and large arteries and predicts future cardiovascular disease. The purpose of this study was to establish whether endurance athletes possess lower AIx and aortic blood pressure compared to healthy controls, and to determine the association between AIx and cardiorespiratory fitness. Methods: Forty-six endurance athletes and 43 healthy controls underwent central BP and AIx measurements by non-invasive applanation tonometry before a maximal exercise test. Peak oxygen uptake (V˙ O 2 peak) was assessed by pulmonary analysis. Results: Relative to controls, athletes had significantly lower brachial diastolic blood pressure (BP, −4.8 mmHg, p < 0.01), central systolic BP (−3.5 mmHg, p = 0.07), and AIx at a heart rate of 75 beats min−1 (AIx@75, −11.9 %, p < 0.001). No AIx@75 differences were observed between athletes and controls when adjusted for age and V˙ O 2 peak [athletes vs controls mean (%) ± SE: −6.9 ± 2.2 vs −5.7 ± 2.3, p = 0.76]. Relative to men with low V˙ O 2 peak, those with moderate and high V˙ O 2 peak had lower age-adjusted AIx@75 (p < 0.001). In women, those with high V˙ O 2 peak had lower AIx@75 than those with low and moderate V˙ O 2 peak (p < 0.01). Conclusions: The lower AIx@75 in endurance athletes is partly mediated by V˙ O 2 peak. While an inverse relationship between AIx@75 and V˙ O 2 peak was found in men, women with the highest V˙ O 2 peak possessed lowest AIx@75 compared to females with moderate or poor cardiorespiratory fitness. We recommend aerobic training aimed at achieving a minimum V˙ O 2 peak of 45 ml kg−1 min−1 to decrease the risk of future cardiovascular events and all-cause mortality.
- Description: Purpose: Endurance exercise improves cardiovascular health and reduces mortality risk. Augmentation index (AIx) reflects adverse loading exerted on the heart and large arteries and predicts future cardiovascular disease. The purpose of this study was to establish whether endurance athletes possess lower AIx and aortic blood pressure compared to healthy controls, and to determine the association between AIx and cardiorespiratory fitness. Methods: Forty-six endurance athletes and 43 healthy controls underwent central BP and AIx measurements by non-invasive applanation tonometry before a maximal exercise test. Peak oxygen uptake (V˙ O 2 peak) was assessed by pulmonary analysis. Results: Relative to controls, athletes had significantly lower brachial diastolic blood pressure (BP, −4.8 mmHg, p < 0.01), central systolic BP (−3.5 mmHg, p = 0.07), and AIx at a heart rate of 75 beats min−1 (AIx@75, −11.9 %, p < 0.001). No AIx@75 differences were observed between athletes and controls when adjusted for age and V˙ O 2 peak [athletes vs controls mean (%) ± SE: −6.9 ± 2.2 vs −5.7 ± 2.3, p = 0.76]. Relative to men with low V˙ O 2 peak, those with moderate and high V˙ O 2 peak had lower age-adjusted AIx@75 (p < 0.001). In women, those with high V˙ O 2 peak had lower AIx@75 than those with low and moderate V˙ O 2 peak (p < 0.01). Conclusions: The lower AIx@75 in endurance athletes is partly mediated by V˙ O 2 peak. While an inverse relationship between AIx@75 and V˙ O 2 peak was found in men, women with the highest V˙ O 2 peak possessed lowest AIx@75 compared to females with moderate or poor cardiorespiratory fitness. We recommend aerobic training aimed at achieving a minimum V˙ O 2 peak of 45 ml kg−1 min−1 to decrease the risk of future cardiovascular events and all-cause mortality. © 2016, Springer-Verlag Berlin Heidelberg.
Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise
- Denham, Joshua, O'Brien, Brendan, Marques, Francine, Charchar, Fadi
- Authors: Denham, Joshua , O'Brien, Brendan , Marques, Francine , Charchar, Fadi
- Date: 2015
- Type: Text , Journal article
- Relation: Journal of Applied Physiology Vol. 118, no. 4 (2015), p. 475-488
- Relation: http://purl.org/au-research/grants/nhmrc/1009490
- Full Text: false
- Reviewed:
- Description: Physical exercise has proven cardiovascular benefits, yet there is no clear understanding of the related molecular mechanisms leading to this. Here we determined the beneficial epigenetic effects of exercise after sprint interval training, a form of exercise known to improve cardiometabolic health. We quantified genome-wide leukocyte DNA methylation of 12 healthy young (18-24 yr) men before and after 4 wk (thrice weekly) of sprint interval training using the 450K BeadChip (Illumina) and validated gene expression changes in an extra seven subjects. Exercise increased subjects' cardiorespiratory fitness and maximal running performance, and decreased low-density lipoprotein cholesterol concentration in conjunction with genome-wide DNA methylation changes. Notably, many CpG island and gene promoter regions were demethylated after exercise, indicating increased genome-wide transcriptional changes. Among genes with DNA methylation changes, epidermal growth factor (EGF), a ligand of the epidermal growth factor receptor known to be involved in cardiovascular disease, was demethylated and showed decreased mRNA expression. Additionally, we found that in microRNAs miR-21 and miR-210, gene DNA methylation was altered by exercise causing a cascade effect on the expression of the mature microRNA involved in cardiovascular function. Our findings demonstrate that exercise alters DNA methylation in circulating blood cells in microRNA and protein-coding genes associated with cardiovascular physiology. Copyright © 2015 the American Physiological Society
Coconut water : a sports drink alternative?
- O’Brien, Brendan, Bell, Leo, Hennessy, Declan, Denham, Joshua, Paton, Carl
- Authors: O’Brien, Brendan , Bell, Leo , Hennessy, Declan , Denham, Joshua , Paton, Carl
- Date: 2023
- Type: Text , Journal article
- Relation: Sports Vol. 11, no. 9 (2023), p.
- Full Text:
- Reviewed:
- Description: Coconut water is used as an alternative to conventional sports drinks for hydration during endurance cycling; however, evidence supporting its use is limited. This study determined if drinking coconut water compared to a sports drink altered cycling performance and physiology. In a randomized crossover trial, 19 experienced male (n = 15) and female (n = 4) cyclists (age 30 ± 9 years, body mass 79 ± 11 kg, (Formula presented.) O2 peak 55 ± 8 mL·kg
- Authors: O’Brien, Brendan , Bell, Leo , Hennessy, Declan , Denham, Joshua , Paton, Carl
- Date: 2023
- Type: Text , Journal article
- Relation: Sports Vol. 11, no. 9 (2023), p.
- Full Text:
- Reviewed:
- Description: Coconut water is used as an alternative to conventional sports drinks for hydration during endurance cycling; however, evidence supporting its use is limited. This study determined if drinking coconut water compared to a sports drink altered cycling performance and physiology. In a randomized crossover trial, 19 experienced male (n = 15) and female (n = 4) cyclists (age 30 ± 9 years, body mass 79 ± 11 kg, (Formula presented.) O2 peak 55 ± 8 mL·kg
Epigenetic changes in leukocytes after 8 weeks of resistance exercise training
- Denham, Joshua, Marques, Francine, Bruns, Emma, O'Brien, Brendan, Charchar, Fadi
- Authors: Denham, Joshua , Marques, Francine , Bruns, Emma , O'Brien, Brendan , Charchar, Fadi
- Date: 2016
- Type: Text , Journal article
- Relation: European Journal of Applied Physiology Vol. 116, no. 6 (2016), p. 1245-1253
- Relation: http://purl.org/au-research/grants/nhmrc/1009490
- Full Text: false
- Reviewed:
- Description: PURPOSE: Regular engagement in resistance exercise training elicits many health benefits including improvement to muscular strength, hypertrophy and insulin sensitivity, though the underpinning molecular mechanisms are poorly understood. The purpose of this study was to determine the influence 8 weeks of resistance exercise training has on leukocyte genome-wide DNA methylation and gene expression in healthy young men. METHODS: Eight young (21.1 +/- 2.2 years) men completed one repetition maximum (1RM) testing before completing 8 weeks of supervised, thrice-weekly resistance exercise training comprising three sets of 8-12 repetitions with a load equivalent to 80 % of 1RM. Blood samples were collected at rest before and after the 8-week training intervention. Genome-wide DNA methylation and gene expression were assessed on isolated leukocyte DNA and RNA using the 450K BeadChip and HumanHT-12 v4 Expression BeadChip (Illumina), respectively. RESULTS: Resistance exercise training significantly improved upper and lower body strength concurrently with diverse genome-wide DNA methylation and gene expression changes (p = 0. 01). DNA methylation changes occurred at multiple regions throughout the genome in context with genes and CpG islands, and in genes relating to axon guidance, diabetes and immune pathways. There were multiple genes with increased expression that were enriched for RNA processing and developmental proteins. Growth factor genes-GHRH and FGF1-showed differential methylation and mRNA expression changes after resistance training. CONCLUSIONS: Our findings indicate that resistance exercise training improves muscular strength and is associated with reprogramming of the leukocyte DNA methylome and transcriptome.
Exercise : Putting action into our epigenome
- Denham, Joshua, Marques, Francine, O'Brien, Brendan, Charchar, Fadi
- Authors: Denham, Joshua , Marques, Francine , O'Brien, Brendan , Charchar, Fadi
- Date: 2014
- Type: Text , Journal article
- Relation: Sports Medicine Vol. 44, no. 2 (2014), p. 189-209
- Relation: http://purl.org/au-research/grants/nhmrc/1009490
- Full Text:
- Reviewed:
- Description: Most human phenotypes are influenced by a combination of genomic and environmental factors. Engaging in regular physical exercise prevents many chronic diseases, decreases mortality risk and increases longevity. However, the mechanisms involved are poorly understood. The modulating effect of physical (aerobic and resistance) exercise on gene expression has been known for some time now and has provided us with an understanding of the biological responses to physical exercise. Emerging research data suggest that epigenetic modifications are extremely important for both development and disease in humans. In the current review, we summarise findings on the effect of exercise on epigenetic modifications and their effects on gene expression. Current research data suggest epigenetic modifications (DNA methylation and histone acetylation) and microRNAs (miRNAs) are responsive to acute aerobic and resistance exercise in brain, blood, skeletal and cardiac muscle, adipose tissue and even buccal cells. Six months of aerobic exercise alters whole-genome DNA methylation in skeletal muscle and adipose tissue and directly influences lipogenesis. Some miRNAs are related to maximal oxygen consumption (VO 2max) and VO2max trainability, and are differentially expressed amongst individuals with high and low VO2max. Remarkably, miRNA expression profiles discriminate between low and high responders to resistance exercise (miR-378, -26a, -29a and -451) and correlate to gains in lean body mass (miR-378). The emerging field of exercise epigenomics is expected to prosper and additional studies may elucidate the clinical relevance of miRNAs and epigenetic modifications, and delineate mechanisms by which exercise confers a healthier phenotype and improves performance. © 2013 Springer International Publishing Switzerland. Funded by NHMRC; National Health and Medical Research Council
Exercise to combat cancer : focusing on the ends
- Denham, Joshua, Bliss, Edward, Bryan, Tracy, O’Brien, Brendan, Mills, Dean
- Authors: Denham, Joshua , Bliss, Edward , Bryan, Tracy , O’Brien, Brendan , Mills, Dean
- Date: 2024
- Type: Text , Journal article
- Relation: Physiological Genomics Vol. 56, no. 12 (2024), p. 869-875
- Full Text: false
- Reviewed:
- Description: Cancer remains a leading cause of death worldwide and although prognosis and survivorship after therapy have improved signif-icantly, current cancer treatments have long-term health consequences. For decades telomerase-mediated telomere maintenance has been an attractive anti-cancer therapeutic target due to its abundance and role in telomere maintenance, pathogenesis, and growth in neoplasms. Telomere maintenance-specific cancer therapies, however, are marred by off-target side effects that must be addressed before they reach clinical practice. Regular exercise training is associated with telomerase-mediated telomere maintenance in normal cells, which is associated with healthy aging. A single bout of endurance exercise training dynamically, but temporarily, increases TERT mRNA and telomerase activity, as well as several molecules that control genomic stability and telomere length (i.e., shelterin and TERRA). Considering the epidemiological findings and accumulating research highlighting that exercise significantly reduces the risk of many types of cancers and the anti-carcinogenic effects of exercise on tumor growth in vitro, investigating the governing molecular mechanisms of telomerase control in context with exercise and cancer may provide important new insights to explain these findings. Specifically, the molecular mechanisms controlling telomerase in both healthy cells and tumors after exercise could reveal novel therapeutic targets for tumor-specific telomere maintenance and offer important evidence that may refine current physical activity and exercise guidelines for all stages of cancer care. © 2024 the American Physiological Society.
Four weeks of sprint interval training improves 5-km run performance
- Denham, Joshua, Feros, Simon, O'Brien, Brendan
- Authors: Denham, Joshua , Feros, Simon , O'Brien, Brendan
- Date: 2015
- Type: Text , Journal article
- Relation: Journal of Strength and Conditioning Research Vol. 29, no. 8 (2015), p. 2137-2141
- Full Text:
- Reviewed:
- Description: Sprint interval training (SIT) rapidly improves cardiorespiratory fitness but demands less training time and volume than traditional endurance training. Although the health and fitness benefits caused by SIT have received considerable research focus, the effect of short-term SIT on 5-km run performance is unknown. Thirty healthy untrained participants (aged 18-25 years) were allocated to a control (n = 10) or a SIT (n = 20) group. Sprint interval training involved 3-8 sprints at maximal intensity, 3 times a week for 4 weeks. Sprints were progressed to 8 by the 12th session. All participants completed a 5-km time trial on a public running track and an incremental treadmill test in an exercise physiology laboratory to determine 5-km run performance and maximum oxygen uptake, respectively, before and after the 4-week intervention. Relative to the controls, sprint interval-trained participants improved 5-km run performance by 4.5% (p < 0.001), and this was accompanied by improvements in absolute and relative maximum oxygen uptake (4.9%, p 0.04 and 4.5%, p = 0.045, respectively). Therefore, short-term SIT significantly improves 5-km run performance in untrained young men. We believe that SIT is a time-efficient means of improving cardiorespiratory fitness and 5-km endurance performance. © 2015 National Strength and Conditioning Association.
- Authors: Denham, Joshua , Feros, Simon , O'Brien, Brendan
- Date: 2015
- Type: Text , Journal article
- Relation: Journal of Strength and Conditioning Research Vol. 29, no. 8 (2015), p. 2137-2141
- Full Text:
- Reviewed:
- Description: Sprint interval training (SIT) rapidly improves cardiorespiratory fitness but demands less training time and volume than traditional endurance training. Although the health and fitness benefits caused by SIT have received considerable research focus, the effect of short-term SIT on 5-km run performance is unknown. Thirty healthy untrained participants (aged 18-25 years) were allocated to a control (n = 10) or a SIT (n = 20) group. Sprint interval training involved 3-8 sprints at maximal intensity, 3 times a week for 4 weeks. Sprints were progressed to 8 by the 12th session. All participants completed a 5-km time trial on a public running track and an incremental treadmill test in an exercise physiology laboratory to determine 5-km run performance and maximum oxygen uptake, respectively, before and after the 4-week intervention. Relative to the controls, sprint interval-trained participants improved 5-km run performance by 4.5% (p < 0.001), and this was accompanied by improvements in absolute and relative maximum oxygen uptake (4.9%, p 0.04 and 4.5%, p = 0.045, respectively). Therefore, short-term SIT significantly improves 5-km run performance in untrained young men. We believe that SIT is a time-efficient means of improving cardiorespiratory fitness and 5-km endurance performance. © 2015 National Strength and Conditioning Association.
Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans
- Denham, Joshua, O'Brien, Brendan, Harvey, Jack, Charchar, Fadi
- Authors: Denham, Joshua , O'Brien, Brendan , Harvey, Jack , Charchar, Fadi
- Date: 2015
- Type: Text , Journal article
- Relation: Epigenomics Vol. 7, no. 5 (2015), p. 717-731
- Full Text:
- Reviewed:
- Description: Aim: DNA methylation programs gene expression and is involved in numerous biological processes. Accumulating evidence supports transgenerational inheritance of DNA methylation changes in mammals via germ cells. Our aim was to determine the effect of exercise on sperm DNA methylation. Materials & methods: Twenty-four men were recruited and assigned to an exercise intervention or control group. Clinical parameters were measured and sperm samples were donated by subjects before and after the 3-month time-period. Mature sperm global and genome-wide DNA methylation was assessed using an ELISA assay and the 450K BeadChip (Illumina). Results: Global and genome-wide sperm DNA methylation was altered after 3 months of exercise training. DNA methylation changes occurred in genes related to numerous diseases such as schizophrenia and Parkinson's disease. Conclusions: Our study provides the first evidence showing exercise training reprograms the sperm methylome. Whether these DNA methylation changes are inherited to future generations warrants attention.
- Authors: Denham, Joshua , O'Brien, Brendan , Harvey, Jack , Charchar, Fadi
- Date: 2015
- Type: Text , Journal article
- Relation: Epigenomics Vol. 7, no. 5 (2015), p. 717-731
- Full Text:
- Reviewed:
- Description: Aim: DNA methylation programs gene expression and is involved in numerous biological processes. Accumulating evidence supports transgenerational inheritance of DNA methylation changes in mammals via germ cells. Our aim was to determine the effect of exercise on sperm DNA methylation. Materials & methods: Twenty-four men were recruited and assigned to an exercise intervention or control group. Clinical parameters were measured and sperm samples were donated by subjects before and after the 3-month time-period. Mature sperm global and genome-wide DNA methylation was assessed using an ELISA assay and the 450K BeadChip (Illumina). Results: Global and genome-wide sperm DNA methylation was altered after 3 months of exercise training. DNA methylation changes occurred in genes related to numerous diseases such as schizophrenia and Parkinson's disease. Conclusions: Our study provides the first evidence showing exercise training reprograms the sperm methylome. Whether these DNA methylation changes are inherited to future generations warrants attention.
Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres
- Denham, Joshua, O'Brien, Brendan, Prestes, Priscilla, Brown, Nicholas, Charchar, Fadi
- Authors: Denham, Joshua , O'Brien, Brendan , Prestes, Priscilla , Brown, Nicholas , Charchar, Fadi
- Date: 2015
- Type: Text , Journal article
- Relation: Journal of Applied Physiology Vol. 120, no. 2 (2015), p. 148-158
- Relation: http://purl.org/au-research/grants/nhmrc/1009490
- Full Text:
- Reviewed:
- Description: Leukocyte telomeres shorten with age, and excessive shortening is associated with age-related cardiometabolic diseases. Exercise training may prevent disease through telomere length maintenance although the optimal amount of exercise that attenuates telomere attrition is unknown. Furthermore, the underlying molecular mechanisms responsible for the enhanced telomere maintenance observed in endurance athletes is poorly understood. We quantified the leukocyte telomere length and analyzed the expression of telomere-regulating genes in endurance athletes and healthy controls (both n = 61), using quantitative PCR. We found endurance athletes have significantly longer (7.1%, 208-416 nt) leukocyte telomeres and upregulated TERT (2.0-fold) and TPP1 (1.3-fold) mRNA expression compared with controls in age-adjusted analysis. The telomere length and telomere-regulating gene expression differences were no longer statistically significant after adjustment for resting heart rate and relative (V) over dotO(2 max) (all P > 0.05). Resting heart rate emerged as an independent predictor of leukocyte telomere length and TERT and TPP1 mRNA expression in stepwise regression models. To gauge whether volume of exercise was associated with leukocyte telomere length, we divided subjects into running and cycling tertiles (distance covered per week) and found individuals in the middle and highest tertiles had longer telomeres than individuals in the lowest tertile. These data emphasize the importance of cardiorespiratory fitness and exercise training in the prevention of biological aging. They also support the concept that moderate amounts of exercise training protects against biological aging, while higher amounts may not elicit additional benefits.
- Authors: Denham, Joshua , O'Brien, Brendan , Prestes, Priscilla , Brown, Nicholas , Charchar, Fadi
- Date: 2015
- Type: Text , Journal article
- Relation: Journal of Applied Physiology Vol. 120, no. 2 (2015), p. 148-158
- Relation: http://purl.org/au-research/grants/nhmrc/1009490
- Full Text:
- Reviewed:
- Description: Leukocyte telomeres shorten with age, and excessive shortening is associated with age-related cardiometabolic diseases. Exercise training may prevent disease through telomere length maintenance although the optimal amount of exercise that attenuates telomere attrition is unknown. Furthermore, the underlying molecular mechanisms responsible for the enhanced telomere maintenance observed in endurance athletes is poorly understood. We quantified the leukocyte telomere length and analyzed the expression of telomere-regulating genes in endurance athletes and healthy controls (both n = 61), using quantitative PCR. We found endurance athletes have significantly longer (7.1%, 208-416 nt) leukocyte telomeres and upregulated TERT (2.0-fold) and TPP1 (1.3-fold) mRNA expression compared with controls in age-adjusted analysis. The telomere length and telomere-regulating gene expression differences were no longer statistically significant after adjustment for resting heart rate and relative (V) over dotO(2 max) (all P > 0.05). Resting heart rate emerged as an independent predictor of leukocyte telomere length and TERT and TPP1 mRNA expression in stepwise regression models. To gauge whether volume of exercise was associated with leukocyte telomere length, we divided subjects into running and cycling tertiles (distance covered per week) and found individuals in the middle and highest tertiles had longer telomeres than individuals in the lowest tertile. These data emphasize the importance of cardiorespiratory fitness and exercise training in the prevention of biological aging. They also support the concept that moderate amounts of exercise training protects against biological aging, while higher amounts may not elicit additional benefits.
Leukocyte telomere length variation due to DNA extraction method
- Denham, Joshua, Marques, Francine, Charchar, Fadi
- Authors: Denham, Joshua , Marques, Francine , Charchar, Fadi
- Date: 2014
- Type: Text , Journal article
- Relation: BMC research notes Vol. 7, no. (2014), p. 877
- Full Text: false
- Reviewed:
- Description: Telomere length is indicative of biological age. Shorter telomeres have been associated with several disease and health states. There are inconsistencies throughout the literature amongst relative telomere length measured by quantitative PCR (qPCR) and different extraction methods or kits used. We quantified whole-blood leukocyte telomere length using the telomere to single copy gene (T/S) ratio by qPCR in 20 young (18-25 yrs) men after extracting DNA using three common extraction methods: Lahiri and Nurnberger (high salt) method, PureLink Genomic DNA Mini kit (Life Technologies) and QiaAmp DNA Mini kit (Qiagen). Telomere length differences of DNA extracted from the three extraction methods was assessed by one-way analysis of variance (ANOVA).
Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors
- Denham, Joshua, Nelson, Christopher, O'Brien, Brendan, Nankervis, Scott, Denniff, Matthew, Harvey, Jack, Marques, Francine, Codd, Veryan, Zukowska-Szczechowska, Ewa, Samani, Nilesh, Tomaszewski, Maciej, Charchar, Fadi
- Authors: Denham, Joshua , Nelson, Christopher , O'Brien, Brendan , Nankervis, Scott , Denniff, Matthew , Harvey, Jack , Marques, Francine , Codd, Veryan , Zukowska-Szczechowska, Ewa , Samani, Nilesh , Tomaszewski, Maciej , Charchar, Fadi
- Date: 2013
- Type: Text , Journal article
- Relation: PLoS ONE Vol. 8, no. 7 (2013), p.
- Full Text:
- Reviewed:
- Description: Telomere length is recognized as a marker of biological age, and shorter mean leukocyte telomere length is associated with increased risk of cardiovascular disease. It is unclear whether repeated exposure to ultra-endurance aerobic exercise is beneficial or detrimental in the long-term and whether it attenuates biological aging. We quantified 67 ultra-marathon runners' and 56 apparently healthy males' leukocyte telomere length (T/S ratio) using real-time quantitative PCR. The ultra-marathon runners had 11% longer telomeres (T/S ratio) than controls (ultra-marathon runners: T/S ratio = 3.5±0.68, controls: T/S ratio = 3.1±0.41;
- Description: 2003011219
- Authors: Denham, Joshua , Nelson, Christopher , O'Brien, Brendan , Nankervis, Scott , Denniff, Matthew , Harvey, Jack , Marques, Francine , Codd, Veryan , Zukowska-Szczechowska, Ewa , Samani, Nilesh , Tomaszewski, Maciej , Charchar, Fadi
- Date: 2013
- Type: Text , Journal article
- Relation: PLoS ONE Vol. 8, no. 7 (2013), p.
- Full Text:
- Reviewed:
- Description: Telomere length is recognized as a marker of biological age, and shorter mean leukocyte telomere length is associated with increased risk of cardiovascular disease. It is unclear whether repeated exposure to ultra-endurance aerobic exercise is beneficial or detrimental in the long-term and whether it attenuates biological aging. We quantified 67 ultra-marathon runners' and 56 apparently healthy males' leukocyte telomere length (T/S ratio) using real-time quantitative PCR. The ultra-marathon runners had 11% longer telomeres (T/S ratio) than controls (ultra-marathon runners: T/S ratio = 3.5±0.68, controls: T/S ratio = 3.1±0.41;
- Description: 2003011219
Muscle-enriched MicroRNAs isolated from whole blood are regulated by exercise and are potential biomarkers of cardiorespiratory fitness
- Denham, Joshua, Prestes, Priscilla
- Authors: Denham, Joshua , Prestes, Priscilla
- Date: 2016
- Type: Text , Journal article
- Relation: Frontiers in Genetics Vol. 7, no. NOV (2016), p. 1-8
- Full Text:
- Reviewed:
- Description: MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally. Evidence indicating miRNAs influence exercise-induced health and performance adaptations is mounting. Circulating miRNAs are responsible for intercellular communication and could serve as biomarkers for disease and exercise-related traits. Such biomarkers would contribute to exercise screening, monitoring, and the development of personalized exercise prescription. Accordingly, we investigated the impact of long-term strenuous aerobic exercise training and a single bout of maximal aerobic exercise on five muscle-enriched miRNAs implicated in exercise adaptations (miR-1, miR-133a, miR-181a, miR-486, and miR-494). We also determined linear correlations between miRNAs, resting heart rate, and maximum oxygen uptake (V˙O2 max). We used TaqMan assay quantitative polymerase chain reaction to analyze the abundance of miR-1, miR-133a, miR-181a, miR-486, and miR-494 in resting whole blood of 67 endurance athletes and 61 healthy controls. Relative to controls, endurance athletes exhibited increased miR-1, miR-486, and miR-494 content (1.26- to 1.58-fold change, all p < 0.05). miR-1, miR-133a, and miR-486 were decreased immediately after maximal aerobic exercise (0.64- to 0.76-fold change, all p < 0.01) performed by 19 healthy, young men (20.7 ± 2.4 years). Finally, we observed positive correlations between miRNA abundance and V˙ O2 max (miR-1 and miR-486) and an inverse correlation between miR-486 and resting heart rate. Therefore, muscle-enriched miRNAs isolated from whole blood are regulated by acute and long-term aerobic exercise training and could serve as biomarkers of cardiorespiratory fitness. © 2016 Denham and Prestes.
- Authors: Denham, Joshua , Prestes, Priscilla
- Date: 2016
- Type: Text , Journal article
- Relation: Frontiers in Genetics Vol. 7, no. NOV (2016), p. 1-8
- Full Text:
- Reviewed:
- Description: MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally. Evidence indicating miRNAs influence exercise-induced health and performance adaptations is mounting. Circulating miRNAs are responsible for intercellular communication and could serve as biomarkers for disease and exercise-related traits. Such biomarkers would contribute to exercise screening, monitoring, and the development of personalized exercise prescription. Accordingly, we investigated the impact of long-term strenuous aerobic exercise training and a single bout of maximal aerobic exercise on five muscle-enriched miRNAs implicated in exercise adaptations (miR-1, miR-133a, miR-181a, miR-486, and miR-494). We also determined linear correlations between miRNAs, resting heart rate, and maximum oxygen uptake (V˙O2 max). We used TaqMan assay quantitative polymerase chain reaction to analyze the abundance of miR-1, miR-133a, miR-181a, miR-486, and miR-494 in resting whole blood of 67 endurance athletes and 61 healthy controls. Relative to controls, endurance athletes exhibited increased miR-1, miR-486, and miR-494 content (1.26- to 1.58-fold change, all p < 0.05). miR-1, miR-133a, and miR-486 were decreased immediately after maximal aerobic exercise (0.64- to 0.76-fold change, all p < 0.01) performed by 19 healthy, young men (20.7 ± 2.4 years). Finally, we observed positive correlations between miRNA abundance and V˙ O2 max (miR-1 and miR-486) and an inverse correlation between miR-486 and resting heart rate. Therefore, muscle-enriched miRNAs isolated from whole blood are regulated by acute and long-term aerobic exercise training and could serve as biomarkers of cardiorespiratory fitness. © 2016 Denham and Prestes.
Progressive overload in cardiorespiratory exercise training for young and old : is increasing duration or intensity of exercise more important?
- Bell, Leo, Worn, Ryan, O'Grady, Mathew, Denham, Joshua, O'Brien, Brendan
- Authors: Bell, Leo , Worn, Ryan , O'Grady, Mathew , Denham, Joshua , O'Brien, Brendan
- Date: 2024
- Type: Text , Journal article
- Relation: Medical Hypotheses Vol. 188, no. (2024), p.
- Full Text:
- Reviewed:
- Description: People undertake endurance training to improve their health and cardio-respiratory fitness. Subsequent cardio-respiratory and skeletal muscle aerobic metabolic adaptations are gauged by improvements in maximum or peak oxygen uptake (V̇O2peak) and the blood lactate inflection point or threshold during incremental exercise – (LIP). To further improve physiological capability, subsequent homoeostatic disturbances from exercise should be progressively greater in succeeding exercise sessions. Therefore, exercise duration, frequency or intensity should be progressively increased during a training regimen to ensure adaptation potential is realized. A progressive increase in training workload is termed “progressive overload”. Despite the universal acknowledgment of the importance of progressive overload, it is unclear if systematically progressing altering either exercise intensity or duration (or distance covered) affect cardio-respiratory gains differently in young and older populations. As running faster results in higher heart rates and greater skeletal muscle metabolic stress than running the same distance at a lower speed, in this hypothesis we postulate that progressively increasing exercise run intensity will result in greater mean and higher incidence of V̇O2peak and LIP gains in young adults (<50 years). However, the mechanisms that initiate improvements in cardio-respiratory fitness and skeletal muscle aerobic function may be different in older adults due to the inevitable aging decline in cardio-vascular function and mechanical and morphological properties of muscle–tendon units. In older adults (>60 years) we hypothesize progressively increasing run distance while maintaining the same speed will just be as effective as to progressively increasing speed to improve V̇O2peak and LIP. To test these hypotheses, we propose a study that compares progressively increasing run intensity to a treatment of progressive matched run distance where speed remains constant in young and old adults. © 2024
- Authors: Bell, Leo , Worn, Ryan , O'Grady, Mathew , Denham, Joshua , O'Brien, Brendan
- Date: 2024
- Type: Text , Journal article
- Relation: Medical Hypotheses Vol. 188, no. (2024), p.
- Full Text:
- Reviewed:
- Description: People undertake endurance training to improve their health and cardio-respiratory fitness. Subsequent cardio-respiratory and skeletal muscle aerobic metabolic adaptations are gauged by improvements in maximum or peak oxygen uptake (V̇O2peak) and the blood lactate inflection point or threshold during incremental exercise – (LIP). To further improve physiological capability, subsequent homoeostatic disturbances from exercise should be progressively greater in succeeding exercise sessions. Therefore, exercise duration, frequency or intensity should be progressively increased during a training regimen to ensure adaptation potential is realized. A progressive increase in training workload is termed “progressive overload”. Despite the universal acknowledgment of the importance of progressive overload, it is unclear if systematically progressing altering either exercise intensity or duration (or distance covered) affect cardio-respiratory gains differently in young and older populations. As running faster results in higher heart rates and greater skeletal muscle metabolic stress than running the same distance at a lower speed, in this hypothesis we postulate that progressively increasing exercise run intensity will result in greater mean and higher incidence of V̇O2peak and LIP gains in young adults (<50 years). However, the mechanisms that initiate improvements in cardio-respiratory fitness and skeletal muscle aerobic function may be different in older adults due to the inevitable aging decline in cardio-vascular function and mechanical and morphological properties of muscle–tendon units. In older adults (>60 years) we hypothesize progressively increasing run distance while maintaining the same speed will just be as effective as to progressively increasing speed to improve V̇O2peak and LIP. To test these hypotheses, we propose a study that compares progressively increasing run intensity to a treatment of progressive matched run distance where speed remains constant in young and old adults. © 2024
Telomere length maintenance and cardio-metabolic disease prevention through exercise training
- Denham, Joshua, O'Brien, Brendan, Charchar, Fadi
- Authors: Denham, Joshua , O'Brien, Brendan , Charchar, Fadi
- Date: 2016
- Type: Text , Journal article , Review
- Relation: Sports Medicine Vol. 46, no. 9 (2016), p. 1213-1237
- Relation: http://purl.org/au-research/grants/nhmrc/1009490
- Full Text:
- Reviewed:
- Description: Telomeres are tandem repeat DNA sequences located at distal ends of chromosomes that protect against genomic DNA degradation and chromosomal instability. Excessive telomere shortening leads to cellular senescence and for this reason telomere length is a marker of biological age. Abnormally short telomeres may culminate in the manifestation of a number of cardio-metabolic diseases. Age-related cardio-metabolic diseases attributable to an inactive lifestyle, such as obesity, type 2 diabetes mellitus and cardiovascular disease, are associated with short leukocyte telomeres. Exercise training prevents and manages the symptoms of many cardio-metabolic diseases whilst concurrently maintaining telomere length. The positive relationship between exercise training, physical fitness and telomere length raises the possibility of a mediating role of telomeres in chronic disease prevention via exercise. Further elucidation of the underpinning molecular mechanisms of how exercise maintains telomere length should provide crucial information on how physical activity can be best structured to combat the chronic disease epidemic and improve the human health span. Here, we synthesise and discuss the current evidence on the impact of physical activity and cardiorespiratory fitness on telomere dynamics. We provide the molecular mechanisms with a known role in exercise-induced telomere length maintenance and highlight unexplored, alternative pathways ripe for future investigations.
- Authors: Denham, Joshua , O'Brien, Brendan , Charchar, Fadi
- Date: 2016
- Type: Text , Journal article , Review
- Relation: Sports Medicine Vol. 46, no. 9 (2016), p. 1213-1237
- Relation: http://purl.org/au-research/grants/nhmrc/1009490
- Full Text:
- Reviewed:
- Description: Telomeres are tandem repeat DNA sequences located at distal ends of chromosomes that protect against genomic DNA degradation and chromosomal instability. Excessive telomere shortening leads to cellular senescence and for this reason telomere length is a marker of biological age. Abnormally short telomeres may culminate in the manifestation of a number of cardio-metabolic diseases. Age-related cardio-metabolic diseases attributable to an inactive lifestyle, such as obesity, type 2 diabetes mellitus and cardiovascular disease, are associated with short leukocyte telomeres. Exercise training prevents and manages the symptoms of many cardio-metabolic diseases whilst concurrently maintaining telomere length. The positive relationship between exercise training, physical fitness and telomere length raises the possibility of a mediating role of telomeres in chronic disease prevention via exercise. Further elucidation of the underpinning molecular mechanisms of how exercise maintains telomere length should provide crucial information on how physical activity can be best structured to combat the chronic disease epidemic and improve the human health span. Here, we synthesise and discuss the current evidence on the impact of physical activity and cardiorespiratory fitness on telomere dynamics. We provide the molecular mechanisms with a known role in exercise-induced telomere length maintenance and highlight unexplored, alternative pathways ripe for future investigations.
Telomere, DNA Methylation and Gene Expression changes caused by exercise training
- Authors: Denham, Joshua
- Date: 2016
- Type: Text , Thesis , PhD
- Full Text:
- Description: Exercise training is one of the few therapeutic interventions that improves health span by delaying the onset of age-related diseases and preventing early death. Despite the clear benefits to health conferred by exercise training, our understanding of the underlying molecular mechanisms remain crude. The primary purpose of this thesis is to determine and analyse the molecular biology changes that occur with strenuous aerobic exercise. Specifically, the main objectives were to investigate the impact of strenuous aerobic exercise training on structural DNA modifications, measured in context with cardiovascular health and fitness adaptations. In the first part of this thesis I investigated the influence of endurance exercise training on leukocyte telomere length and cardiovascular health. Leukocyte telomere length reflects biological age. Indeed, excessively short leukocyte telomeres are associated with age-related chronic diseases. Epidemiological studies indicate endurance athletes live longer than people from the general public who do not engage in extensive aerobic exercise training. In Chapter 2, my literature review on the subject of exercise and telomere biology suggested that, at the time of this study, the impact of exercise training on leukocyte telomere length was equivocal. Therefore, to determine whether strenuous aerobic exercise training influences biological ageing (assessed by leukocyte telomere length), I conducted two cross-sectional studies on leukocyte telomere length differences between endurance athletes and healthy controls. The first study (Chapter 3) was a cross-sectional analysis of leukocyte telomere length between athletes and controls, determined by quantitative polymerase chain reaction (qPCR). This is a relative measurement of telomere length expressed as a telomere (T) to single copy gene (S) ratio. Relative to the healthy controls (n = 56), the ultra-marathon runners (n = 67) possessed 11% longer leukocyte telomeres in age-adjusted analysis (ultra-marathon runners vs controls; average T/S ratio: 3.56 vs 3.16, p = 1.4 × 10-4) and the difference was not explained by the favourable cardiovascular health profile exhibited by the athletes (p = 2.2 × 10-4). The difference in leukocyte telomere length indicated the athletes had reduced their biological age by 16.2 years. To elucidate the potential mechanism for the longer leukocyte telomeres observed in endurance athletes, I recruited another cohort of athletes and controls and measured leukocyte telomere length and gene expression of genes involved in telomere length regulation. In the second study (Chapter 4), I describe data replicating the finding that endurance athletes possess longer leukocyte telomeres compared to healthy controls (athletes v controls mean T/S ratio ± SE: 3.64 ± 0.06 vs 3.38 ± 0.06, p = 0.002). This difference was associated with a concomitant increased activity of two important telomere regulating genes, telomerase reverse transcriptase (TERT) and adrenocortical dysplasia homolog (TPP1) (2- fold and 1.3-fold, respectively, both p < 0.05). The difference in leukocyte telomere length and leukocyte telomere-regulating gene (TERT and TPP1 mRNA) expression was ameliorated after adjusting for maximal oxygen uptake and resting heart rate (all p > 0.05). This finding indicates that cardiorespiratory fitness is an important determinant of telomere biology. Together, these two cross-sectional studies suggest that regular endurance exercise training is associated with longer leukocytes telomeres and that this is likely achieved through higher TPP1 and TERT mRNA expression gained through improved cardiorespiratory fitness. The findings in Chapters 3 and 4 provide evidence for extensive endurance exercise training as an effective lifestyle strategy to attenuate biological ageing. In parallel to telomere length changes, epigenetic modifications (e.g. DNA methylation) caused by environmental factors alter the transcriptomic milieu of cells. My thorough literature review (Chapter 5) revealed that exercise training seems to rearrange chromatin by modifying the DNA methylome in a variety of cells and that the extent is dictated by exercise duration and intensity. Therefore, in the second part of my thesis, I investigated the DNA methylation changes in leukocytes (which are somatic cells) and sperm (male germ cells) from healthy men before and after sprint interval training (SIT). Unlike traditional, long duration training at moderate intensity training, SIT involves short, intense (>85% VO2max to supra-maximal) efforts followed by periods of rest (3–4 min), typically repeated 3–8 times. It is an effective type of training that improves cardiorespiratory fitness quicker than traditional long slow distance training. Thus, to establish the DNA methylome changes associated with SIT, I conducted two training studies and analysed the leukocyte and sperm methylomes using the Infinium HumanMethylation450 BeadChip (Illumina). My third study (Chapter 6) provides the first evidence showing an association between DNA methylation changes paralleled with improvements to lipid profile and cardiorespiratory fitness in humans. Twelve young men (18–24 years) undertook SIT (thrice weekly) for four weeks. Resting blood samples were obtained and whole-blood leukocytes were isolated by red blood cell lysis. Genome-wide DNA methylation was assessed using the 450K BeadChip (Illumina). Cardiorespiratory fitness, determined by maximal oxygen uptake, was improved by 2.1 ml.kg-1.min-1 and low-density lipo-protein cholesterol was decreased by 3.9% after SIT (p < 0.05). Notably, the leukocyte methylome was significantly affected by SIT, in regions throughout the genome in relation to CpG islands – CpG islands, North shores, N shelves, South shores and South shelve – and the nearest genes – 3’ untranslated region (UTR), 5’ UTR, exonic, intergenic, intronic, non-coding and promoter regions (all p < 0.001). Genes with differentially methylated CpG sites (q < 0.005) after SIT were enriched for cardiovascular gene ontology (GO) terms that included metabolic activity, biological adhesion and antioxidant activity. Similarly, pathway analysis revealed genes involved in focal adhesion, calcium signaling and mitogen activated protein kinase were modulated by SIT-induced DNA methylation changes. Amongst the 205,987 probes relating 32,445 transcripts differentially methylated after SIT (q < 0.05), with methylation changes between 0.1 – 62.8%, the largest and most statistically significant demethylated site was in the epidermal growth factor (EGF) gene, causing decreased mRNA expression. As with EGF, the microRNA-21 and microRNA-210 genes (MIR21 and MIR210, respectively), known for their roles in cardiovascular disease (ischemic heart disease and coronary atherosclerosis), had modest but consistently statistically significant DNA methylation changes at numerous CpG sites, which altered mature microRNA abundance. Together, these data suggest that genome-wide DNA methylation changes occur after short-term intense exercise training concurrently with improvements to blood cholesterol profile and cardiorespiratory fitness. The data presented in this thesis provided evidence that the epigenome of somatic cells is malleable to exercise. There is mounting evidence supporting the premise that environmental perturbations cause DNA methylation changes and these are subsequently transgenerationally inherited, altering phenotypes of future generations. In the current study I also asked the question; can exercise training reconfigure the DNA methylome of male germ cells (sperm)? Therefore, my next study (Chapter 7) entails an analysis of the impact that three months of SIT has on genome-wide DNA methylation of sperm in healthy men. Thirteen subjects undertook twice-weekly SIT for three months, while the controls were asked not to change their current physical activity habits (if any). Sperm samples were donated before and after the three-month intervention. Mature sperm were isolated using density gradient centrifugation and DNA was extracted using the Purelink Genomic DNA Mini Kit (Life Technologies). Global and genome-wide DNA methylation was assessed using an enzyme-linked immunosorbent assay-based kit and the 450K BeadChip (Illumina), respectively. Relative to controls, the cases decreased their resting heart rate and had a higher maximal treadmill speed during exercise testing (both p < 0.05). Cases had decreased global DNA methylation after SIT compared to controls (p < 0.05). Genome-wide DNA methylation analysis revealed numerous modest (0.3 – 6%) methylation changes to 7509 CpG sites, relating to 4602 transcripts (q ≤ 0.1). Differentially methylated CpG sites were in genes associated with developmental biology, which included GO terms, such as developmental process, anatomical structure, embryonic morphogenesis and organ development, together with known pathways regulated by exercise training (MAPK, ErbB and PI3K-Akt signalling). Genes with increased methylation were associated with numerous human diseases, with most overrepresented being psychiatric disorders (schizophrenia, Parkinson’s disease and autism). Notably, paternally imprinted genes associated with other diseases were also differentially methylated after SIT. Therefore, exercise training is associated with the modifications to genome-wide DNA methylation of both somatic and germ cells. In conclusion, the studies presented as a series of peer-reviewed publications, outlines investigations that describe an influence of strenuous exercise training on leukocyte telomere length regulation and the DNA methylome of both leukocytes and germ cells. Both of these molecular changes in leukocytes and sperm provide evidence for novel molecular mechanisms by which exercise improves cardiovascular health and fitness. Future investigations should focus on longitudinal studies determining whether these changes are required for improved health and fitness, and should establish whether exercise-induced DNA methylation changes are transgenerationally inherited, and if so, what impact this has to future generations. Such discoveries could change national physical activity guidelines and policies, by emphasising the benefit of regular exercise both in the present and to future offspring.
- Description: Doctor of Philosophy
- Authors: Denham, Joshua
- Date: 2016
- Type: Text , Thesis , PhD
- Full Text:
- Description: Exercise training is one of the few therapeutic interventions that improves health span by delaying the onset of age-related diseases and preventing early death. Despite the clear benefits to health conferred by exercise training, our understanding of the underlying molecular mechanisms remain crude. The primary purpose of this thesis is to determine and analyse the molecular biology changes that occur with strenuous aerobic exercise. Specifically, the main objectives were to investigate the impact of strenuous aerobic exercise training on structural DNA modifications, measured in context with cardiovascular health and fitness adaptations. In the first part of this thesis I investigated the influence of endurance exercise training on leukocyte telomere length and cardiovascular health. Leukocyte telomere length reflects biological age. Indeed, excessively short leukocyte telomeres are associated with age-related chronic diseases. Epidemiological studies indicate endurance athletes live longer than people from the general public who do not engage in extensive aerobic exercise training. In Chapter 2, my literature review on the subject of exercise and telomere biology suggested that, at the time of this study, the impact of exercise training on leukocyte telomere length was equivocal. Therefore, to determine whether strenuous aerobic exercise training influences biological ageing (assessed by leukocyte telomere length), I conducted two cross-sectional studies on leukocyte telomere length differences between endurance athletes and healthy controls. The first study (Chapter 3) was a cross-sectional analysis of leukocyte telomere length between athletes and controls, determined by quantitative polymerase chain reaction (qPCR). This is a relative measurement of telomere length expressed as a telomere (T) to single copy gene (S) ratio. Relative to the healthy controls (n = 56), the ultra-marathon runners (n = 67) possessed 11% longer leukocyte telomeres in age-adjusted analysis (ultra-marathon runners vs controls; average T/S ratio: 3.56 vs 3.16, p = 1.4 × 10-4) and the difference was not explained by the favourable cardiovascular health profile exhibited by the athletes (p = 2.2 × 10-4). The difference in leukocyte telomere length indicated the athletes had reduced their biological age by 16.2 years. To elucidate the potential mechanism for the longer leukocyte telomeres observed in endurance athletes, I recruited another cohort of athletes and controls and measured leukocyte telomere length and gene expression of genes involved in telomere length regulation. In the second study (Chapter 4), I describe data replicating the finding that endurance athletes possess longer leukocyte telomeres compared to healthy controls (athletes v controls mean T/S ratio ± SE: 3.64 ± 0.06 vs 3.38 ± 0.06, p = 0.002). This difference was associated with a concomitant increased activity of two important telomere regulating genes, telomerase reverse transcriptase (TERT) and adrenocortical dysplasia homolog (TPP1) (2- fold and 1.3-fold, respectively, both p < 0.05). The difference in leukocyte telomere length and leukocyte telomere-regulating gene (TERT and TPP1 mRNA) expression was ameliorated after adjusting for maximal oxygen uptake and resting heart rate (all p > 0.05). This finding indicates that cardiorespiratory fitness is an important determinant of telomere biology. Together, these two cross-sectional studies suggest that regular endurance exercise training is associated with longer leukocytes telomeres and that this is likely achieved through higher TPP1 and TERT mRNA expression gained through improved cardiorespiratory fitness. The findings in Chapters 3 and 4 provide evidence for extensive endurance exercise training as an effective lifestyle strategy to attenuate biological ageing. In parallel to telomere length changes, epigenetic modifications (e.g. DNA methylation) caused by environmental factors alter the transcriptomic milieu of cells. My thorough literature review (Chapter 5) revealed that exercise training seems to rearrange chromatin by modifying the DNA methylome in a variety of cells and that the extent is dictated by exercise duration and intensity. Therefore, in the second part of my thesis, I investigated the DNA methylation changes in leukocytes (which are somatic cells) and sperm (male germ cells) from healthy men before and after sprint interval training (SIT). Unlike traditional, long duration training at moderate intensity training, SIT involves short, intense (>85% VO2max to supra-maximal) efforts followed by periods of rest (3–4 min), typically repeated 3–8 times. It is an effective type of training that improves cardiorespiratory fitness quicker than traditional long slow distance training. Thus, to establish the DNA methylome changes associated with SIT, I conducted two training studies and analysed the leukocyte and sperm methylomes using the Infinium HumanMethylation450 BeadChip (Illumina). My third study (Chapter 6) provides the first evidence showing an association between DNA methylation changes paralleled with improvements to lipid profile and cardiorespiratory fitness in humans. Twelve young men (18–24 years) undertook SIT (thrice weekly) for four weeks. Resting blood samples were obtained and whole-blood leukocytes were isolated by red blood cell lysis. Genome-wide DNA methylation was assessed using the 450K BeadChip (Illumina). Cardiorespiratory fitness, determined by maximal oxygen uptake, was improved by 2.1 ml.kg-1.min-1 and low-density lipo-protein cholesterol was decreased by 3.9% after SIT (p < 0.05). Notably, the leukocyte methylome was significantly affected by SIT, in regions throughout the genome in relation to CpG islands – CpG islands, North shores, N shelves, South shores and South shelve – and the nearest genes – 3’ untranslated region (UTR), 5’ UTR, exonic, intergenic, intronic, non-coding and promoter regions (all p < 0.001). Genes with differentially methylated CpG sites (q < 0.005) after SIT were enriched for cardiovascular gene ontology (GO) terms that included metabolic activity, biological adhesion and antioxidant activity. Similarly, pathway analysis revealed genes involved in focal adhesion, calcium signaling and mitogen activated protein kinase were modulated by SIT-induced DNA methylation changes. Amongst the 205,987 probes relating 32,445 transcripts differentially methylated after SIT (q < 0.05), with methylation changes between 0.1 – 62.8%, the largest and most statistically significant demethylated site was in the epidermal growth factor (EGF) gene, causing decreased mRNA expression. As with EGF, the microRNA-21 and microRNA-210 genes (MIR21 and MIR210, respectively), known for their roles in cardiovascular disease (ischemic heart disease and coronary atherosclerosis), had modest but consistently statistically significant DNA methylation changes at numerous CpG sites, which altered mature microRNA abundance. Together, these data suggest that genome-wide DNA methylation changes occur after short-term intense exercise training concurrently with improvements to blood cholesterol profile and cardiorespiratory fitness. The data presented in this thesis provided evidence that the epigenome of somatic cells is malleable to exercise. There is mounting evidence supporting the premise that environmental perturbations cause DNA methylation changes and these are subsequently transgenerationally inherited, altering phenotypes of future generations. In the current study I also asked the question; can exercise training reconfigure the DNA methylome of male germ cells (sperm)? Therefore, my next study (Chapter 7) entails an analysis of the impact that three months of SIT has on genome-wide DNA methylation of sperm in healthy men. Thirteen subjects undertook twice-weekly SIT for three months, while the controls were asked not to change their current physical activity habits (if any). Sperm samples were donated before and after the three-month intervention. Mature sperm were isolated using density gradient centrifugation and DNA was extracted using the Purelink Genomic DNA Mini Kit (Life Technologies). Global and genome-wide DNA methylation was assessed using an enzyme-linked immunosorbent assay-based kit and the 450K BeadChip (Illumina), respectively. Relative to controls, the cases decreased their resting heart rate and had a higher maximal treadmill speed during exercise testing (both p < 0.05). Cases had decreased global DNA methylation after SIT compared to controls (p < 0.05). Genome-wide DNA methylation analysis revealed numerous modest (0.3 – 6%) methylation changes to 7509 CpG sites, relating to 4602 transcripts (q ≤ 0.1). Differentially methylated CpG sites were in genes associated with developmental biology, which included GO terms, such as developmental process, anatomical structure, embryonic morphogenesis and organ development, together with known pathways regulated by exercise training (MAPK, ErbB and PI3K-Akt signalling). Genes with increased methylation were associated with numerous human diseases, with most overrepresented being psychiatric disorders (schizophrenia, Parkinson’s disease and autism). Notably, paternally imprinted genes associated with other diseases were also differentially methylated after SIT. Therefore, exercise training is associated with the modifications to genome-wide DNA methylation of both somatic and germ cells. In conclusion, the studies presented as a series of peer-reviewed publications, outlines investigations that describe an influence of strenuous exercise training on leukocyte telomere length regulation and the DNA methylome of both leukocytes and germ cells. Both of these molecular changes in leukocytes and sperm provide evidence for novel molecular mechanisms by which exercise improves cardiovascular health and fitness. Future investigations should focus on longitudinal studies determining whether these changes are required for improved health and fitness, and should establish whether exercise-induced DNA methylation changes are transgenerationally inherited, and if so, what impact this has to future generations. Such discoveries could change national physical activity guidelines and policies, by emphasising the benefit of regular exercise both in the present and to future offspring.
- Description: Doctor of Philosophy
- «
- ‹
- 1
- ›
- »