20802 Computation Theory and Mathematics
2Super (a,d)-edge-antimagic total labeling
1(A,d)-edge-antimagic total labeling
10101 Pure Mathematics
1Australian Digital Thesis
1Construction techniques
1Degree
1Diameter
1Edge-antimagicness
1Graphs
1MKn,n,n and K 1,m âˆª 2sK1,n
1S-crowns

Show More

Show Less

Format Type

Antimagic labeling of disjoint union of s-crowns

- Baca, Martin, Dafik, Miller, Mirka, Ryan, Joe

**Authors:**Baca, Martin , Dafik , Miller, Mirka , Ryan, Joe**Date:**2009**Type:**Text , Journal article**Relation:**Utilitas Mathematica Vol. 79, no. (2009), p. 193-205**Full Text:**false**Reviewed:****Description:**A graph G is called (a, d)-edge-antimagic total if it admits a labeling of the vertices and edges by pairwise distinct integers of 1,2,..., |V(G)| + |E(G)| such that the edge-weights, w(uÏ…) = f(u) + f(Ï…) + f(uÏ…), uv âˆˆ E(G), form an arithmetic sequence with the first term a and common difference d. Such a graph G is called super if the smallest possible labels appear on the vertices. A construction of super (a, d)-edge-antimagic total labelings of some disconnected graphs are described.

Edge-antimagic total labeling of disjoint union of caterpillars

- Baca, Martin, Dafik, Miller, Mirka, Ryan, Joe

**Authors:**Baca, Martin , Dafik , Miller, Mirka , Ryan, Joe**Date:**2008**Type:**Text , Journal article**Relation:**Journal of combinatorial mathematics and combinatorial computing Vol. 65, no. (May 2008 2008), p. 61-70**Full Text:**false**Reviewed:**

On antimagic labelings of disjoint union of complete s-partite graphs

- Dafik, Miller, Mirka, Ryan, Joe, Baca, Martin

**Authors:**Dafik , Miller, Mirka , Ryan, Joe , Baca, Martin**Date:**2008**Type:**Text , Journal article**Relation:**Journal of combinatorial mathematics and combinatorial computing Vol. 65, no. (May 2008 2008), p. 41-49**Full Text:****Reviewed:****Description:**By an (a, d)-edge-antimagic total labeling of a graph G(V, E) we mean a bijective function f from V(G) u E(G) onto the set. { 1, 2, ... ,ǀV(C)ǀ+IE(G)I} such that the set of all the edge-weights, w(uv) ,.... f(u) + f(uv) + f(v), uv C E (G), is {a, a+ d, a+ 2d, . . . , a + (lE(G)I-1)d}, for two integers a > 0 and d

**Authors:**Dafik , Miller, Mirka , Ryan, Joe , Baca, Martin**Date:**2008**Type:**Text , Journal article**Relation:**Journal of combinatorial mathematics and combinatorial computing Vol. 65, no. (May 2008 2008), p. 41-49**Full Text:****Reviewed:****Description:**By an (a, d)-edge-antimagic total labeling of a graph G(V, E) we mean a bijective function f from V(G) u E(G) onto the set. { 1, 2, ... ,ǀV(C)ǀ+IE(G)I} such that the set of all the edge-weights, w(uv) ,.... f(u) + f(uv) + f(v), uv C E (G), is {a, a+ d, a+ 2d, . . . , a + (lE(G)I-1)d}, for two integers a > 0 and d

Open problems in the construction of large directed graphs

- Dafik, Miller, Mirka, Ryan, Joe, Slamin,

**Authors:**Dafik , Miller, Mirka , Ryan, Joe , Slamin,**Date:**2005**Type:**Text , Conference paper**Relation:**Paper presented at the Sixteenth Australasian Workshop on Combinatorial Algorithms, Ballarat, Victoria : 18th - 21st September, 2005**Full Text:**false**Reviewed:****Description:**E1**Description:**2003001352

Structural properties and labeling of graphs

- Dafik

**Authors:**Dafik**Date:**2007**Type:**Text , Thesis , PhD**Full Text:****Description:**The complexity in building massive scale parallel processing systems has re- sulted in a growing interest in the study of interconnection networks design. Network design affects the performance, cost, scalability, and availability of parallel computers. Therefore, discovering a good structure of the network is one of the basic issues. From modeling point of view, the structure of networks can be naturally stud- ied in terms of graph theory. Several common desirable features of networks, such as large number of processing elements, good throughput, short data com- munication delay, modularity, good fault tolerance and diameter vulnerability correspond to properties of the underlying graphs of networks, including large number of vertices, small diameter, high connectivity and overall balance (or regularity) of the graph or digraph. The first part of this thesis deals with the issue of interconnection networks ad- dressing system. From graph theory point of view, this issue is mainly related to a graph labeling. We investigate a special family of graph labeling, namely antimagic labeling of a class of disconnected graphs. We present new results in super (a; d)-edge antimagic total labeling for disjoint union of multiple copies of special families of graphs. The second part of this thesis deals with the issue of regularity of digraphs with the number of vertices close to the upper bound, called the Moore bound, which is unobtainable for most values of out-degree and diameter. Regularity of the underlying graph of a network is often considered to be essential since the flow of messages and exchange of data between processing elements will be on average faster if there is a similar number of interconnections coming in and going out of each processing element. This means that the in-degree and out-degree of each processing element must be the same or almost the same. Our new results show that digraphs of order two less than Moore bound are either diregular or almost diregular.**Description:**Doctor of Philosophy

**Authors:**Dafik**Date:**2007**Type:**Text , Thesis , PhD**Full Text:****Description:**The complexity in building massive scale parallel processing systems has re- sulted in a growing interest in the study of interconnection networks design. Network design affects the performance, cost, scalability, and availability of parallel computers. Therefore, discovering a good structure of the network is one of the basic issues. From modeling point of view, the structure of networks can be naturally stud- ied in terms of graph theory. Several common desirable features of networks, such as large number of processing elements, good throughput, short data com- munication delay, modularity, good fault tolerance and diameter vulnerability correspond to properties of the underlying graphs of networks, including large number of vertices, small diameter, high connectivity and overall balance (or regularity) of the graph or digraph. The first part of this thesis deals with the issue of interconnection networks ad- dressing system. From graph theory point of view, this issue is mainly related to a graph labeling. We investigate a special family of graph labeling, namely antimagic labeling of a class of disconnected graphs. We present new results in super (a; d)-edge antimagic total labeling for disjoint union of multiple copies of special families of graphs. The second part of this thesis deals with the issue of regularity of digraphs with the number of vertices close to the upper bound, called the Moore bound, which is unobtainable for most values of out-degree and diameter. Regularity of the underlying graph of a network is often considered to be essential since the flow of messages and exchange of data between processing elements will be on average faster if there is a similar number of interconnections coming in and going out of each processing element. This means that the in-degree and out-degree of each processing element must be the same or almost the same. Our new results show that digraphs of order two less than Moore bound are either diregular or almost diregular.**Description:**Doctor of Philosophy

Super edge-antimagic total labelings of mKn,n,n

- Dafik, Miller, Mirka, Ryan, Joe, Baca, Martin

**Authors:**Dafik , Miller, Mirka , Ryan, Joe , Baca, Martin**Date:**2011**Type:**Text , Journal article**Relation:**Ars Combinatoria Vol. 101, no. (2011), p. 97-107**Full Text:**false**Reviewed:****Description:**An (a, d)-edge-antimagic total labeling on (p, q)-graph G is a one-to-one map f from V(G) ∪ E(G) onto the integers 1,2,...,p + q with the property that the edge-weights, w(uv) = f(u)+f(v)+f(uv) where uv Îµ E(G), form an arithmetic progression starting from a and having common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. In this paper, we investigate the existence of super (a, d)-edge-antimagic total labeling of disjoint union of multiple copies of complete tripartite graph and disjoint union of stars.**Description:**An (a, d)-edge-antimagic total labeling on (p, q)-graph G is a one-to-one map f from V(G) ∪ E(G) onto the integers 1,2,...,p + q with the property that the edge-weights, w(uv) = f(u)+f(v)+f(uv) where uv Îµ E(G), form an arithmetic progression starting from a and having common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. In this paper, we investigate the existence of super (a, d)-edge-antimagic total labeling of disjoint union of multiple copies of complete tripartite graph and disjoint union of stars.

Super edge-antimagicness for a class of disconnected graphs

- Dafik, Miller, Mirka, Ryan, Joe, Baca, Martin

**Authors:**Dafik , Miller, Mirka , Ryan, Joe , Baca, Martin**Date:**2006**Type:**Text , Conference paper**Relation:**Paper presented at AWOCA 2006, 17th Australasian Workshop on Combinatorial Algorithms, Uluru, Australia : 13th July, 2006 p. 67-75**Full Text:**false**Reviewed:****Description:**E1**Description:**2003001916

- «
- ‹
- 1
- ›
- »

Are you sure you would like to clear your session, including search history and login status?