Early-stage reciprocity in sustainable scientific collaboration
- Wang, Wei, Ren, Jing, Alrashoud, Mubarak, Xia, Feng, Mao, Mengyi, Tolba, Amr
- Authors: Wang, Wei , Ren, Jing , Alrashoud, Mubarak , Xia, Feng , Mao, Mengyi , Tolba, Amr
- Date: 2020
- Type: Text , Journal article
- Relation: Journal of Informetrics Vol. 14, no. 3 (2020), p.
- Full Text:
- Reviewed:
- Description: Scientific collaboration is of significant importance in tackling grand challenges and breeding innovations. Despite the increasing interest in investigating and promoting scientific collaborations, we know little about the collaboration sustainability as well as mechanisms behind it. In this paper, we set out to study the relationships between early-stage reciprocity and collaboration sustainability. By proposing and defining h-index reciprocity, we give a comprehensive statistical analysis on how reciprocity influences scientific collaboration sustainability, and find that scholars are not altruism and the key to sustainable collaboration is fairness. The unfair h-index reciprocity has an obvious negative impact on collaboration sustainability. The bigger the reciprocity difference, the less sustainable in collaboration. This work facilitates understanding sustainable collaborations and thus will benefit both individual scholar in optimizing collaboration strategies and the whole academic society in improving teamwork efficiency. © 2020 Elsevier Ltd.
- Description: The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP-78. This work is partially supported by China Postdoctoral Science Foundation ( 2019M651115 ).
- Authors: Wang, Wei , Ren, Jing , Alrashoud, Mubarak , Xia, Feng , Mao, Mengyi , Tolba, Amr
- Date: 2020
- Type: Text , Journal article
- Relation: Journal of Informetrics Vol. 14, no. 3 (2020), p.
- Full Text:
- Reviewed:
- Description: Scientific collaboration is of significant importance in tackling grand challenges and breeding innovations. Despite the increasing interest in investigating and promoting scientific collaborations, we know little about the collaboration sustainability as well as mechanisms behind it. In this paper, we set out to study the relationships between early-stage reciprocity and collaboration sustainability. By proposing and defining h-index reciprocity, we give a comprehensive statistical analysis on how reciprocity influences scientific collaboration sustainability, and find that scholars are not altruism and the key to sustainable collaboration is fairness. The unfair h-index reciprocity has an obvious negative impact on collaboration sustainability. The bigger the reciprocity difference, the less sustainable in collaboration. This work facilitates understanding sustainable collaborations and thus will benefit both individual scholar in optimizing collaboration strategies and the whole academic society in improving teamwork efficiency. © 2020 Elsevier Ltd.
- Description: The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP-78. This work is partially supported by China Postdoctoral Science Foundation ( 2019M651115 ).
Emergency warning messages dissemination in vehicular social networks: A trust based scheme
- Ullah, Noor, Kong, Xiangjie, Ning, Zhaolong, Tolba, Amr, Alrashoud, Mubarak, Xia, Feng
- Authors: Ullah, Noor , Kong, Xiangjie , Ning, Zhaolong , Tolba, Amr , Alrashoud, Mubarak , Xia, Feng
- Date: 2020
- Type: Text , Journal article
- Relation: Vehicular Communications Vol. 22 (2020)
- Full Text:
- Reviewed:
- Description: To ensure users' safety on the road, a plethora of dissemination schemes for Emergency Warning Messages (EWMs) have been proposed in vehicular networks. However, the issue of false alarms triggered by malicious users still poses serious challenges, such as disruption of vehicular traffic especially on highways leading to precarious effects. This paper proposes a novel Trust based Dissemination Scheme (TDS) for EWMs in Vehicular Social Networks (VSNs) to solve the aforementioned issue. To ensure the authenticity of EWMs, we exploit the user-post credibility network for identifying true and false alarms. Moreover, we develop a reputation mechanism by calculating a trust-score for each node based on its social-utility, behavior, and contribution in the network. We utilize the hybrid architecture of VSNs by employing social-groups based dissemination in Vehicle-to-Infrastructure (V2I) mode, whereas nodes' friendship-network in Vehicle-to-Vehicle (V2V) mode. We analyze the proposed scheme for accuracy by extensive simulations under varying malicious nodes ratio in the network. Furthermore, we compare the efficiency of TDS with state-of-the-art dissemination schemes in VSNs for delivery ratio, transmission delay, number of transmissions, and hop-count. The experimental results validate the significant efficacy of TDS in accuracy and aforementioned network parameters. © 2019 Elsevier Inc.
- Authors: Ullah, Noor , Kong, Xiangjie , Ning, Zhaolong , Tolba, Amr , Alrashoud, Mubarak , Xia, Feng
- Date: 2020
- Type: Text , Journal article
- Relation: Vehicular Communications Vol. 22 (2020)
- Full Text:
- Reviewed:
- Description: To ensure users' safety on the road, a plethora of dissemination schemes for Emergency Warning Messages (EWMs) have been proposed in vehicular networks. However, the issue of false alarms triggered by malicious users still poses serious challenges, such as disruption of vehicular traffic especially on highways leading to precarious effects. This paper proposes a novel Trust based Dissemination Scheme (TDS) for EWMs in Vehicular Social Networks (VSNs) to solve the aforementioned issue. To ensure the authenticity of EWMs, we exploit the user-post credibility network for identifying true and false alarms. Moreover, we develop a reputation mechanism by calculating a trust-score for each node based on its social-utility, behavior, and contribution in the network. We utilize the hybrid architecture of VSNs by employing social-groups based dissemination in Vehicle-to-Infrastructure (V2I) mode, whereas nodes' friendship-network in Vehicle-to-Vehicle (V2V) mode. We analyze the proposed scheme for accuracy by extensive simulations under varying malicious nodes ratio in the network. Furthermore, we compare the efficiency of TDS with state-of-the-art dissemination schemes in VSNs for delivery ratio, transmission delay, number of transmissions, and hop-count. The experimental results validate the significant efficacy of TDS in accuracy and aforementioned network parameters. © 2019 Elsevier Inc.
Multimodal educational data fusion for students' mental health detection
- Guo, Teng, Zhao, Wenhong, Alrashoud, Mubarak, Tolba, Amr, Firmin, Sally, Xia, Feng
- Authors: Guo, Teng , Zhao, Wenhong , Alrashoud, Mubarak , Tolba, Amr , Firmin, Sally , Xia, Feng
- Date: 2022
- Type: Text , Journal article
- Relation: IEEE Access Vol. 10, no. (2022), p. 70370-70382
- Full Text:
- Reviewed:
- Description: Mental health issues can lead to serious consequences like depression, self-mutilation, and worse, especially for university students who are not physically and mentally mature. Not all students with poor mental health are aware of their situation and actively seek help. Proactive detection of mental problems is a critical step in addressing this issue. However, accurate detections are hard to achieve due to the inherent complexity and heterogeneity of unstructured multi-modal data generated by campus life. Against this background, we propose a detection framework for detecting students' mental health, named CASTLE (educational data fusion for mental health detection). Three parts are involved in this framework. First, we utilize representation learning to fuse data on social life, academic performance, and physical appearance. An algorithm, named MOON (multi-view social network embedding), is proposed to represent students' social life in a comprehensive way by fusing students' heterogeneous social relations effectively. Second, a synthetic minority oversampling technique algorithm (SMOTE) is applied to the label imbalance issue. Finally, a DNN (deep neural network) model is utilized for the final detection. The extensive results demonstrate the promising performance of the proposed methods in comparison to an extensive range of state-of-the-art baselines. © 2013 IEEE.
- Authors: Guo, Teng , Zhao, Wenhong , Alrashoud, Mubarak , Tolba, Amr , Firmin, Sally , Xia, Feng
- Date: 2022
- Type: Text , Journal article
- Relation: IEEE Access Vol. 10, no. (2022), p. 70370-70382
- Full Text:
- Reviewed:
- Description: Mental health issues can lead to serious consequences like depression, self-mutilation, and worse, especially for university students who are not physically and mentally mature. Not all students with poor mental health are aware of their situation and actively seek help. Proactive detection of mental problems is a critical step in addressing this issue. However, accurate detections are hard to achieve due to the inherent complexity and heterogeneity of unstructured multi-modal data generated by campus life. Against this background, we propose a detection framework for detecting students' mental health, named CASTLE (educational data fusion for mental health detection). Three parts are involved in this framework. First, we utilize representation learning to fuse data on social life, academic performance, and physical appearance. An algorithm, named MOON (multi-view social network embedding), is proposed to represent students' social life in a comprehensive way by fusing students' heterogeneous social relations effectively. Second, a synthetic minority oversampling technique algorithm (SMOTE) is applied to the label imbalance issue. Finally, a DNN (deep neural network) model is utilized for the final detection. The extensive results demonstrate the promising performance of the proposed methods in comparison to an extensive range of state-of-the-art baselines. © 2013 IEEE.
Real-time dissemination of emergency warning messages in 5G enabled selfish vehicular social networks
- Ullah, Noor, Kong, Xiangjie, Lin, Limei, Alrashoud, Mubarak, Tolba, Amr, Xia, Feng
- Authors: Ullah, Noor , Kong, Xiangjie , Lin, Limei , Alrashoud, Mubarak , Tolba, Amr , Xia, Feng
- Date: 2020
- Type: Text , Journal article
- Relation: Computer Networks Vol. 182, no. (2020), p.
- Full Text:
- Reviewed:
- Description: This paper addresses the issues of selfishness, limited network resources, and their adverse effects on real-time dissemination of Emergency Warning Messages (EWMs) in modern Autonomous Moving Platforms (AMPs) such as Vehicular Social Networks (VSNs). For this purpose, we propose a social intelligence based identification mechanism to differentiate between a selfish and a cooperative node in the network. Therefore, we devise a crowdsensing based mechanism to calculate a tie-strength value based on several social metrics. Moreover, we design a recursive evolutionary algorithm for each node's reputation calculation and update. Given that, then we estimate each node's state-transition probability to select a super-spreader for rapid dissemination. In order to ensure a seamless and reliable dissemination process, we incorporate 5G network structure instead of conventional short range communication which is used in most vehicular networks at present. Finally, we design a real-time dissemination algorithm for EWMs and evaluate its performance in terms of network parameters such as delivery-ratio, delay, hop-count, and message-overhead for varying values of vehicular density, speed, and selfish nodes’ density based on realistic vehicular mobility traces. In addition, we present a comparative analysis of the performance of the proposed scheme with state-of-the-art dissemination schemes in VSNs. © 2020 Elsevier B.V.
- Authors: Ullah, Noor , Kong, Xiangjie , Lin, Limei , Alrashoud, Mubarak , Tolba, Amr , Xia, Feng
- Date: 2020
- Type: Text , Journal article
- Relation: Computer Networks Vol. 182, no. (2020), p.
- Full Text:
- Reviewed:
- Description: This paper addresses the issues of selfishness, limited network resources, and their adverse effects on real-time dissemination of Emergency Warning Messages (EWMs) in modern Autonomous Moving Platforms (AMPs) such as Vehicular Social Networks (VSNs). For this purpose, we propose a social intelligence based identification mechanism to differentiate between a selfish and a cooperative node in the network. Therefore, we devise a crowdsensing based mechanism to calculate a tie-strength value based on several social metrics. Moreover, we design a recursive evolutionary algorithm for each node's reputation calculation and update. Given that, then we estimate each node's state-transition probability to select a super-spreader for rapid dissemination. In order to ensure a seamless and reliable dissemination process, we incorporate 5G network structure instead of conventional short range communication which is used in most vehicular networks at present. Finally, we design a real-time dissemination algorithm for EWMs and evaluate its performance in terms of network parameters such as delivery-ratio, delay, hop-count, and message-overhead for varying values of vehicular density, speed, and selfish nodes’ density based on realistic vehicular mobility traces. In addition, we present a comparative analysis of the performance of the proposed scheme with state-of-the-art dissemination schemes in VSNs. © 2020 Elsevier B.V.
TOSNet : a topic-based optimal subnetwork identification in academic networks
- Bedru, Hayat, Zhao, Wenhong, Alrashoud, Mubarak, Tolba, Amr, Guo, He, Xia, Feng
- Authors: Bedru, Hayat , Zhao, Wenhong , Alrashoud, Mubarak , Tolba, Amr , Guo, He , Xia, Feng
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 201015-201027
- Full Text:
- Reviewed:
- Description: Subnetwork identification plays a significant role in analyzing, managing, and comprehending the structure and functions in big networks. Numerous approaches have been proposed to solve the problem of subnetwork identification as well as community detection. Most of the methods focus on detecting communities by considering node attributes, edge information, or both. This study focuses on discovering subnetworks containing researchers with similar or related areas of interest or research topics. A topic- aware subnetwork identification is essential to discover potential researchers on particular research topics and provide qualitywork. Thus, we propose a topic-based optimal subnetwork identification approach (TOSNet). Based on some fundamental characteristics, this paper addresses the following problems: 1)How to discover topic-based subnetworks with a vigorous collaboration intensity? 2) How to rank the discovered subnetworks and single out one optimal subnetwork? We evaluate the performance of the proposed method against baseline methods by adopting the modularity measure, assess the accuracy based on the size of the identified subnetworks, and check the scalability for different sizes of benchmark networks. The experimental findings indicate that our approach shows excellent performance in identifying contextual subnetworks that maintain intensive collaboration amongst researchers for a particular research topic. © 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.
- Authors: Bedru, Hayat , Zhao, Wenhong , Alrashoud, Mubarak , Tolba, Amr , Guo, He , Xia, Feng
- Date: 2020
- Type: Text , Journal article
- Relation: IEEE Access Vol. 8, no. (2020), p. 201015-201027
- Full Text:
- Reviewed:
- Description: Subnetwork identification plays a significant role in analyzing, managing, and comprehending the structure and functions in big networks. Numerous approaches have been proposed to solve the problem of subnetwork identification as well as community detection. Most of the methods focus on detecting communities by considering node attributes, edge information, or both. This study focuses on discovering subnetworks containing researchers with similar or related areas of interest or research topics. A topic- aware subnetwork identification is essential to discover potential researchers on particular research topics and provide qualitywork. Thus, we propose a topic-based optimal subnetwork identification approach (TOSNet). Based on some fundamental characteristics, this paper addresses the following problems: 1)How to discover topic-based subnetworks with a vigorous collaboration intensity? 2) How to rank the discovered subnetworks and single out one optimal subnetwork? We evaluate the performance of the proposed method against baseline methods by adopting the modularity measure, assess the accuracy based on the size of the identified subnetworks, and check the scalability for different sizes of benchmark networks. The experimental findings indicate that our approach shows excellent performance in identifying contextual subnetworks that maintain intensive collaboration amongst researchers for a particular research topic. © 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.
- «
- ‹
- 1
- ›
- »