An efficient hybrid system for anomaly detection in social networks
- Rahman, Md Shafiur, Halder, Sajal, Uddin, Ashraf, Acharjee, Uzzal
- Authors: Rahman, Md Shafiur , Halder, Sajal , Uddin, Ashraf , Acharjee, Uzzal
- Date: 2021
- Type: Text , Journal article
- Relation: Cybersecurity Vol. 4, no. 1 (2021), p.
- Full Text:
- Reviewed:
- Description: Anomaly detection has been an essential and dynamic research area in the data mining. A wide range of applications including different social medias have adopted different state-of-the-art methods to identify anomaly for ensuring user’s security and privacy. The social network refers to a forum used by different groups of people to express their thoughts, communicate with each other, and share the content needed. This social networks also facilitate abnormal activities, spread fake news, rumours, misinformation, unsolicited messages, and propaganda post malicious links. Therefore, detection of abnormalities is one of the important data analysis activities for the identification of normal or abnormal users on the social networks. In this paper, we have developed a hybrid anomaly detection method named DT-SVMNB that cascades several machine learning algorithms including decision tree (C5.0), Support Vector Machine (SVM) and Naïve Bayesian classifier (NBC) for classifying normal and abnormal users in social networks. We have extracted a list of unique features derived from users’ profile and contents. Using two kinds of dataset with the selected features, the proposed machine learning model called DT-SVMNB is trained. Our model classifies users as depressed one or suicidal one in the social network. We have conducted an experiment of our model using synthetic and real datasets from social network. The performance analysis demonstrates around 98% accuracy which proves the effectiveness and efficiency of our proposed system. © 2021, The Author(s).
- Authors: Rahman, Md Shafiur , Halder, Sajal , Uddin, Ashraf , Acharjee, Uzzal
- Date: 2021
- Type: Text , Journal article
- Relation: Cybersecurity Vol. 4, no. 1 (2021), p.
- Full Text:
- Reviewed:
- Description: Anomaly detection has been an essential and dynamic research area in the data mining. A wide range of applications including different social medias have adopted different state-of-the-art methods to identify anomaly for ensuring user’s security and privacy. The social network refers to a forum used by different groups of people to express their thoughts, communicate with each other, and share the content needed. This social networks also facilitate abnormal activities, spread fake news, rumours, misinformation, unsolicited messages, and propaganda post malicious links. Therefore, detection of abnormalities is one of the important data analysis activities for the identification of normal or abnormal users on the social networks. In this paper, we have developed a hybrid anomaly detection method named DT-SVMNB that cascades several machine learning algorithms including decision tree (C5.0), Support Vector Machine (SVM) and Naïve Bayesian classifier (NBC) for classifying normal and abnormal users in social networks. We have extracted a list of unique features derived from users’ profile and contents. Using two kinds of dataset with the selected features, the proposed machine learning model called DT-SVMNB is trained. Our model classifies users as depressed one or suicidal one in the social network. We have conducted an experiment of our model using synthetic and real datasets from social network. The performance analysis demonstrates around 98% accuracy which proves the effectiveness and efficiency of our proposed system. © 2021, The Author(s).
Blockchain leveraged decentralized IoT eHealth framework
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: Internet of Things Vol. 9, no. March 2020 p. 100159
- Full Text:
- Reviewed:
- Description: Blockchain technologies recently emerging for eHealth, can facilitate a secure, decentral- ized and patient-driven, record management system. However, Blockchain technologies cannot accommodate the storage of data generated from IoT devices in remote patient management (RPM) settings as this application requires a fast consensus mechanism, care- ful management of keys and enhanced protocols for privacy. In this paper, we propose a Blockchain leveraged decentralized eHealth architecture which comprises three layers: (1) The Sensing layer –Body Area Sensor Networks include medical sensors typically on or in a patient body transmitting data to a smartphone. (2) The NEAR processing layer –Edge Networks consist of devices at one hop from data sensing IoT devices. (3) The FAR pro- cessing layer –Core Networks comprise Cloud or other high computing servers). A Patient Agent (PA) software replicated on the three layers processes medical data to ensure reli- able, secure and private communication. The PA executes a lightweight Blockchain consen- sus mechanism and utilizes a Blockchain leveraged task-offloading algorithm to ensure pa- tient’s privacy while outsourcing tasks. Performance analysis of the decentralized eHealth architecture has been conducted to demonstrate the feasibility of the system in the pro- cessing and storage of RPM data.
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: Internet of Things Vol. 9, no. March 2020 p. 100159
- Full Text:
- Reviewed:
- Description: Blockchain technologies recently emerging for eHealth, can facilitate a secure, decentral- ized and patient-driven, record management system. However, Blockchain technologies cannot accommodate the storage of data generated from IoT devices in remote patient management (RPM) settings as this application requires a fast consensus mechanism, care- ful management of keys and enhanced protocols for privacy. In this paper, we propose a Blockchain leveraged decentralized eHealth architecture which comprises three layers: (1) The Sensing layer –Body Area Sensor Networks include medical sensors typically on or in a patient body transmitting data to a smartphone. (2) The NEAR processing layer –Edge Networks consist of devices at one hop from data sensing IoT devices. (3) The FAR pro- cessing layer –Core Networks comprise Cloud or other high computing servers). A Patient Agent (PA) software replicated on the three layers processes medical data to ensure reli- able, secure and private communication. The PA executes a lightweight Blockchain consen- sus mechanism and utilizes a Blockchain leveraged task-offloading algorithm to ensure pa- tient’s privacy while outsourcing tasks. Performance analysis of the decentralized eHealth architecture has been conducted to demonstrate the feasibility of the system in the pro- cessing and storage of RPM data.
Continuous patient monitoring with a patient centric agent : A block architecture
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2018
- Type: Text , Journal article
- Relation: IEEE Access Vol. 6, no. (2018), p. 32700-32726
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including continuous remote patient monitoring (RPM). However, the complexity of RPM architectures, the size of data sets generated and limited power capacity of devices make RPM challenging. In this paper, we propose a tier-based End to End architecture for continuous patient monitoring that has a patient centric agent (PCA) as its center piece. The PCA manages a blockchain component to preserve privacy when data streaming from body area sensors needs to be stored securely. The PCA based architecture includes a lightweight communication protocol to enforce security of data through different segments of a continuous, real time patient monitoring architecture. The architecture includes the insertion of data into a personal blockchain to facilitate data sharing amongst healthcare professionals and integration into electronic health records while ensuring privacy is maintained. The blockchain is customized for RPM with modifications that include having the PCA select a Miner to reduce computational effort, enabling the PCA to manage multiple blockchains for the same patient, and the modification of each block with a prefix tree to minimize energy consumption and incorporate secure transaction payments. Simulation results demonstrate that security and privacy can be enhanced in RPM with the PCA based End to End architecture.
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2018
- Type: Text , Journal article
- Relation: IEEE Access Vol. 6, no. (2018), p. 32700-32726
- Full Text:
- Reviewed:
- Description: The Internet of Things (IoT) has facilitated services without human intervention for a wide range of applications, including continuous remote patient monitoring (RPM). However, the complexity of RPM architectures, the size of data sets generated and limited power capacity of devices make RPM challenging. In this paper, we propose a tier-based End to End architecture for continuous patient monitoring that has a patient centric agent (PCA) as its center piece. The PCA manages a blockchain component to preserve privacy when data streaming from body area sensors needs to be stored securely. The PCA based architecture includes a lightweight communication protocol to enforce security of data through different segments of a continuous, real time patient monitoring architecture. The architecture includes the insertion of data into a personal blockchain to facilitate data sharing amongst healthcare professionals and integration into electronic health records while ensuring privacy is maintained. The blockchain is customized for RPM with modifications that include having the PCA select a Miner to reduce computational effort, enabling the PCA to manage multiple blockchains for the same patient, and the modification of each block with a prefix tree to minimize energy consumption and incorporate secure transaction payments. Simulation results demonstrate that security and privacy can be enhanced in RPM with the PCA based End to End architecture.
Rapid health data repository allocation using predictive machine learning
- Uddin, Ashraf, Stranieri, Andrew, Gondal, Iqbal, Balasubramanian, Venki
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: Health Informatics Journal Vol. 26, no. 4 (2020), p. 3009-3036
- Full Text:
- Reviewed:
- Description: Health-related data is stored in a number of repositories that are managed and controlled by different entities. For instance, Electronic Health Records are usually administered by governments. Electronic Medical Records are typically controlled by health care providers, whereas Personal Health Records are managed directly by patients. Recently, Blockchain-based health record systems largely regulated by technology have emerged as another type of repository. Repositories for storing health data differ from one another based on cost, level of security and quality of performance. Not only has the type of repositories increased in recent years, but the quantum of health data to be stored has increased. For instance, the advent of wearable sensors that capture physiological signs has resulted in an exponential growth in digital health data. The increase in the types of repository and amount of data has driven a need for intelligent processes to select appropriate repositories as data is collected. However, the storage allocation decision is complex and nuanced. The challenges are exacerbated when health data are continuously streamed, as is the case with wearable sensors. Although patients are not always solely responsible for determining which repository should be used, they typically have some input into this decision. Patients can be expected to have idiosyncratic preferences regarding storage decisions depending on their unique contexts. In this paper, we propose a predictive model for the storage of health data that can meet patient needs and make storage decisions rapidly, in real-time, even with data streaming from wearable sensors. The model is built with a machine learning classifier that learns the mapping between characteristics of health data and features of storage repositories from a training set generated synthetically from correlations evident from small samples of experts. Results from the evaluation demonstrate the viability of the machine learning technique used. © The Author(s) 2020.
- Authors: Uddin, Ashraf , Stranieri, Andrew , Gondal, Iqbal , Balasubramanian, Venki
- Date: 2020
- Type: Text , Journal article
- Relation: Health Informatics Journal Vol. 26, no. 4 (2020), p. 3009-3036
- Full Text:
- Reviewed:
- Description: Health-related data is stored in a number of repositories that are managed and controlled by different entities. For instance, Electronic Health Records are usually administered by governments. Electronic Medical Records are typically controlled by health care providers, whereas Personal Health Records are managed directly by patients. Recently, Blockchain-based health record systems largely regulated by technology have emerged as another type of repository. Repositories for storing health data differ from one another based on cost, level of security and quality of performance. Not only has the type of repositories increased in recent years, but the quantum of health data to be stored has increased. For instance, the advent of wearable sensors that capture physiological signs has resulted in an exponential growth in digital health data. The increase in the types of repository and amount of data has driven a need for intelligent processes to select appropriate repositories as data is collected. However, the storage allocation decision is complex and nuanced. The challenges are exacerbated when health data are continuously streamed, as is the case with wearable sensors. Although patients are not always solely responsible for determining which repository should be used, they typically have some input into this decision. Patients can be expected to have idiosyncratic preferences regarding storage decisions depending on their unique contexts. In this paper, we propose a predictive model for the storage of health data that can meet patient needs and make storage decisions rapidly, in real-time, even with data streaming from wearable sensors. The model is built with a machine learning classifier that learns the mapping between characteristics of health data and features of storage repositories from a training set generated synthetically from correlations evident from small samples of experts. Results from the evaluation demonstrate the viability of the machine learning technique used. © The Author(s) 2020.
- «
- ‹
- 1
- ›
- »